Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Алгебра"Формулы сокращенного умножения " 7 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Алгебра"Формулы сокращенного умножения " 7 класс

библиотека
материалов



Открытый урок













По алгебре "Формулы сокращенного умножения"

(7-й класс)









Лохматова Т.А











Цели урока:

Образовательные: проверить уровень усвоения учащимися темы, знание ими соответствующих формул и правил.
Развивающие: углубить знания учащихся, развить умения применять приемы сокращенного умножения при решении уравнений, при обнаружении и исправлении ошибок, объяснении своих действий, развитие творческой деятельности учащихся.
Воспитательные: создание условий для включения каждого ученика в активную учебно-познавательную деятельность где каждый может проявить себя, воспитание интереса к математике, расширение кругозора, включение в урок исторического материала.

Тип урока: урок проверки, оценки и коррекции знаний, умений и навыков в форме путешествия « По стране формул». Задания подобраны по нарастающей степени сложности.

План путешествия:

1.«Лес правил» (игра «Домино»).

2. «Поляна соответствий» (верно установив соответствия ученик получает имя великого математика «Диофант», портрет, историческая справка).

3. «Озеро ошибок»

4. «Болото уравнений» (игра «Математическое поле чудес».  Решив правильно уравнения, ученик
выбирает ответы и переворачивает их. В результате получает имя великого математика «Эйлер»,
портрет, историческая справка).

5. «Остров формул» (творческое задание).

Каждый ученик получает маршрутный лист путешествия, на доске также написан план путешествия и формулы:

1.(a-b)²=a²-2ab+b²
2.(a+b)²=a²+2ab+b²
3.(a-b)(a+b)= a²-b²
4. a²-b²=(a-b)(a+b)
5.a³+b³=(a+b)(a²-ab+b²)
6. a³-b³=( a-b)(a²+ab+b²)
7. a²-2ab+b²=(a-b)²
8. a²+2ab+b²= (a+b)²

9.(a + b)3 = a3 + 3a2b + 3ab2 + b3

10.(a — b)3 = a3 — 3a2b + 3ab2 — b3

Ход урока:

Мотивационная часть.
Ребята, формулы сокращенного умножения имеют широкое применение в математике, особенно в старших классах. Их используют при решении уравнений, раскрытии скобок, разложении многочленов на множители, нахождении значений выражений. Поэтому надо хорошо знать эти формулы и уметь применять их в преобразованиях выражений.
А сейчас мы начинаем наше путешествие и попадаем в лес правил.

1. Лес правил.

Вопрос.       Старт.
Квадрат суммы двух выражений равен

Ответ.       Финиш.
Произведению суммы этих выражений и неполного квадрата их разности

Вопрос.
Разность квадратов двух выражений равна

Ответ.
Квадрату первого выражения, плюс удвоенное произведение первого и второго выражений, плюс квадрат второго выражения

Вопрос.
Квадрат разности двух выражений равен

Ответ.
Произведению разности этих выражений и их суммы

Вопрос.
Разность кубов двух выражений равна

Ответ.
Квадрату первого выражения, минус удвоенное произведение первого и второго выражений, плюс квадрат второго выражения

Вопрос.
Сумма кубов двух выражений равна

Ответ.
Разности квадратов этих выражений

Разрезать на пять полосок и раздать ученикам. Начинает читать вопрос ученик, которому досталась карточка со словом «старт». Затем читает ответ второй ученик, у которого продолжение этой формулы, и он называет номер, под которым эта формула написана на доске, затем он зачитывает вопрос со своей карточки. Третий ученик, которому досталось продолжение формулы, читает ответ, называет номер, под которым эта формула написана на доске и зачитывает вопрос со своей карточки. Четвертый ученик, которому досталось продолжение формулы, читает ответ, называет номер, под которым эта формула написана на доске и зачитывает вопрос со своей карточки. Пятый ученик, которому досталось продолжение формулы, читает ответ, называет номер, под которым эта формула написана на доске и зачитывает вопрос со своей карточки. И заканчивает игру снова первый ученик. Ребята, мы успешно преодолели «Лес правил» и попали на «Поляну соответствий».

2. «Поляна соответствий»

формулы

формула

ответа

ответ

буква

1

(x+3)²

1

4x²-9

О

2

x²-16

2

16x²-40xy+25y²

А

3

(2x-3)(2x+3)

3

(x-4)(x+4)

И

4

81-18x+x²

4

(3y+6x)²

Т

5

(4x-5y)²

5

x²+6x+9

Д

6

25x²-49y²

6

(9-x)²

Ф

7

9y²+36yx+36x²

7

(5x-7y)(5x+7y)

Н

Каждый ученик получает карточку, выполняет задание, получает соответствия:
1→5(Д), 2→3(И), 3→1(О), 4→6(Ф), 5→2(А), 6→7(Н), 7→4(Т).

Молодцы ребята, вы получили имя великого математика.  Показываю его портрет.
Историческая справка: Очень давно, в Древней Греции жили и работали замечательные ученые-математики, которые всю свою жизнь отдали служению науке. В то время все алгебраические утверждения выражали в геометрической форме, вместо сложения чисел говорили о сложении отрезков, а произведение двух чисел сравнивали с площадью, трех чисел-с объемом и т.д. первым ученым, который отказался от геометрических способов выражения и перешел к алгебраическим уравнениям был древнегреческий ученый-математик, живший в 3 веке до нашей эры Диофант. Появились формулы, которые стали называться формулами сокращенного умножения.

3. «Озеро ошибок»

Ученику нужно найти ошибку в каждой формуле и исправить ее на своих листах.

1.(4у-3х)(4у+3х)=8у²-9у²   (вместо 8у² должно быть16у²)
2.100х²-4у²=(50х-2у)(50х+2у)  (вместо50х должно быть10х)
3.(3х+у)²=9х²-6ху+у²           (вместо-6ху должно быть+6ху)
4.(6a-9c)²=36a²-54ac+81c²    (вместо-54ac должно быть-108ac)
5.х³+8=(х+2)(х²-4х+4)        (вместо-4х должно быть-2х

6.(a-4)(a+4)=a2-4

7.(2x-y)(2x+y)=2x2-y2

8.(x+7)2=x2+49

9.(x+7)2=x2+7x+49

10.(3a-4b)2=9a2-24ab+16b2



Затем вызываю учеников к доске исправить ошибки в примерах, они еще раз проговаривают формулы и правила. Ребята, мы преодолели «Озеро ошибок» и подошли к «Острову формул».

Вариант 1.

1. Раскройте скобки: (5а – 2b)2

  1. 25a2 – 4b2

  2. 5a2 – 20ab + 2b2

  3. 25a2 – 10ab + 4b2

  4. 25a2 – 20ab + 4b2

2. Разложите на множители: х64 – 4у2

  1. 8 – 2у)(х8 + 2у)

  2. (2у – х32)(2у + х32)

  3. (2у + х32)(х32 – 2у)

  4. (2у + х8)(2у – х8)

3. Раскройте скобки в выражении: (4х3 + 3у)(3у – 4х3)

  1. 16х6 – 9у2

  2. 2 – 16х6

  3. 2 – 16х9

  4. 16х9 – 9у2

Вариант 2.

1. Раскройте скобки: (а + 7b)2

  1. a2 + 49b2

  2. a2 + 14ab + 7b2

  3. a2 + 14ab + 49b2

  4. a2 + 7ab + 49b2

2. Разложите на множители: 16m2 – n16

  1. (n8 – 4m)(n8 + 4m)

  2. (4m – n4)(4m + n4)

  3. (4m + n4)(n4 – 4m)

  4. (4m + n8)(4m – n8)

3. Раскройте скобки в выражении: (5а5 + 2х)(2х – 5а5)

  1. 25а25 – 4х2

  2. 25а10 – 4х2

  3. 2 – 25а10

  4. 2 – 25а25

  5. Подвожу итог урока.

  1. 1. Сегодня я узнал…

  2. 2. Было интересно..

  3. 3. Было трудно…

  4. 4. Я выполнил задание..

  5. 5. Теперь я могу..

  6. 6. Я приобрел…

  7. 7. Я научился..

  8. 8. Я понял, что..

  9. 9. У меня получилось…

  10. 10. Мне захотелось…

Теперь оцените себя сами. Выберете смайлик у себя на парте, на который вы сегодня поработали. Д/З

Краткое описание документа:

  •  Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.
  • Применение формул сокращенного умножения при решении примеров.
  • Свойства бинома Ньютона

 

 

  1. Разложение бинома (a + b)n представляет собой многочлен, расположенный по убывающим степеням a (от n-й до нулевой) и по возрастающим степеням b (от нулевой до n-й); сумма показателей a и b в каждом члене разложения равна показателю степени бинома. Число членов разложения на единицу больше показателя степени бинома.
  • Коэффициенты членов разложения («биноминальные коэффициенты») возрастают до середины разложения и затем убывают; коэффициенты каждой пары членов, равноотстоящих от начала и конца разложения, равны между собой. Если n четное, то имеется один средний наибольший коэффициент; если n нечетное, то имеется два средних наибольших коэффициента.
  • При возведении в n-ю степень разности a - b все четные члены разложения имеют знак "минус": 
Автор
Дата добавления 23.01.2015
Раздел Математика
Подраздел Конспекты
Просмотров1032
Номер материала 331005
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх