Инфоурок / Математика / Презентации / "Арифметическая прогрессия (9 класс) (ПРЕЗЕНТАЦИЯ)"
Только сейчас Вы можете пройти дистанционное обучение на курсах повышения квалификации прямо на сайте "Инфоурок" со скидкой 40%. По окончании курсов Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Открыт приём заявок на новые курсы повышения квалификации:

- «Профилактическая работа в ОО по выявлению троллинга, моббинга и буллинга среди подростков» (108 часов)

- «Психодиагностика в образовательных организациях с учетом реализации ФГОС» (72 часа)

- «Укрепление здоровья детей дошкольного возраста как ценностный приоритет воспитательно-образовательной работы ДОО» (108 часов)

- «Профориентация школьников: психология и выбор профессии» (108 часов)

- «Видеотехнологии и мультипликация в начальной школе» (72 часа)

- «Патриотическое воспитание дошкольников в системе работы педагога дошкольной образовательной организации» (108 часов)

- «Психолого-педагогическое сопровождение детей с синдромом дефицита внимания и гиперактивности (СДВГ)» (72 часа)

- «Использование активных методов обучения в ВУЗе в условиях реализации ФГОС» (108 часов)

- «Специфика преподавания русского языка как иностранного» (108 часов)

- «Экологическое образование детей дошкольного возраста: развитие кругозора и опытно-исследовательская деятельность в рамках реализации ФГОС ДО» (108 часов)

- «Простые машины и механизмы: организация работы ДОУ с помощью образовательных конструкторов» (36 часов)

- «Федеральный государственный стандарт ООО и СОО по истории: требования к современному уроку» (72 часа)

- «Организация маркетинга в туризме» (72 часа)

Также представляем Вашему вниманию новый курс переподготовки «Организация тренерской деятельности по физической культуре и спорту» (300/600 часов, присваиваемая квалификация: Тренер-преподаватель).

Смотреть список всех 216 курсов со скидкой 40%

"Арифметическая прогрессия (9 класс) (ПРЕЗЕНТАЦИЯ)"

библиотека
материалов
Учитель: Скарлат Т. В.
Определение. Арифметической прогрессией называется последовательность, кажды...
Число d называют разностью арифметической прогрессии d =  an+1 - an Если раз...
Свойство арифметической прогрессии: каждый член арифметической прогрессии, н...
Формулы суммы n первых членов арифметической прогрессии
Первое представление о арифметических прогрессиях были ещё у древних народов...
О прогрессиях и их суммах знали древнегреческие учёные. Так, им были известн...
Термин «прогрессия» (от латинского progressio, что означает «движение вперёд...
Формула суммы членов арифметической прогрессии была доказана в книге Евклида...
С арифметической прогрессией связан интересный эпизод из жизни немецкого мат...
Арифметические прогрессии и их свойства изучались математиками с древних вре...
12 1

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.


Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.


Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Описание презентации по отдельным слайдам:

№ слайда 1 Учитель: Скарлат Т. В.
Описание слайда:

Учитель: Скарлат Т. В.

№ слайда 2 Определение. Арифметической прогрессией называется последовательность, кажды
Описание слайда:

Определение. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. an + 1 = an + d , n є N

№ слайда 3 Число d называют разностью арифметической прогрессии d =  an+1 - an Если раз
Описание слайда:

Число d называют разностью арифметической прогрессии d =  an+1 - an Если разность между последующим и предыдущим членами последовательности есть одно и то же число, то это арифметическая прогрессия. Разумеется, при этом предполагается, что обнаруженная закономерность справедлива не только для явно выписанных членов последовательности, но и для всей последовательности в целом. Арифметическая прогрессия считается конечной, если рассматриваются только ее первые несколько членов. Арифметическая прогрессия является: возрастающей последовательностью, если d > 0, например, 1, 3, 5, 7, 9,11,... убывающей, если d < 0, например, 20,17, 14, 11, 8, 5, 2, -1, -4, ...

№ слайда 4 Свойство арифметической прогрессии: каждый член арифметической прогрессии, н
Описание слайда:

Свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Верно и обратное утверждение: если в последовательности (an) каждый член начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией.

№ слайда 5 Формулы суммы n первых членов арифметической прогрессии
Описание слайда:

Формулы суммы n первых членов арифметической прогрессии

№ слайда 6 Первое представление о арифметических прогрессиях были ещё у древних народов
Описание слайда:

Первое представление о арифметических прогрессиях были ещё у древних народов. В клинописных вавилонских табличках и египетских папирусах встречаются задачи на прогрессии и указания, как их решать. В древнеегипетском папирусе Ахмеса (ок.2000г. до н.э.) приводится такая задача: «Пусть тебе сказано: раздели десять мер ячменя между 10 людьми так, чтобы разность мер ячменя, полученного каждым человеком и его соседом, равнялось одна восьмая меры». В этой задачи речь идёт об арифметической прогрессии. Условие задачи, пользуясь современными обозначениями, можно записать так: S10 = 10, d = 1/8, найти a1, a2, a3.

№ слайда 7 О прогрессиях и их суммах знали древнегреческие учёные. Так, им были известн
Описание слайда:

О прогрессиях и их суммах знали древнегреческие учёные. Так, им были известны формулы суммы n чисел последовательности натуральных, чётных и нечётных чисел. Отдельные факты об арифметической прогрессии знали китайские и индийские учёные. Об этом говорит, например известная индийская легенда об изобретателе шахмат.

№ слайда 8 Термин «прогрессия» (от латинского progressio, что означает «движение вперёд
Описание слайда:

Термин «прогрессия» (от латинского progressio, что означает «движение вперёд») был введён римским автором Боэцием ( VI век) и понимался в более широком смысле, как бесконечная числовая последовательность. Названия «арифметическая» и «геометрическая» были перенесены на прогрессии из теории непрерывных пропорций, изучением которых занимались древние греки.

№ слайда 9 Формула суммы членов арифметической прогрессии была доказана в книге Евклида
Описание слайда:

Формула суммы членов арифметической прогрессии была доказана в книге Евклида « Начала» (IIIв. до н.э.). Правило отыскания суммы членов арифметической прогрессии встречается в « Книге абака» Л. Фибоначчи (1202).

№ слайда 10 С арифметической прогрессией связан интересный эпизод из жизни немецкого мат
Описание слайда:

С арифметической прогрессией связан интересный эпизод из жизни немецкого математика К.Ф. Гаусса (1777 – 1855). Когда ему было 9 лет, учитель занятый проверкой работ учеников других классов, задал на уроке следующую задачу: « Сосчитать сумму всех натуральных чисел от 1 до 40 включительно: 1+2+3+4+5+…+40». Каково же было удивление учителя, когда один из учеников (это был Гаусс)через минуту воскликнул: « Я уже решил». Большинство учеников после долгих подсчётов получили неверный результат. В тетради Гаусса было одно число, но зато верное.

№ слайда 11 Арифметические прогрессии и их свойства изучались математиками с древних вре
Описание слайда:

Арифметические прогрессии и их свойства изучались математиками с древних времён. Греческих математиков интересовала связь прогрессий с так называемыми многоугольными числами, вычислением площадей, объемов. Большой популярностью даже в наши дни пользуются магические квадраты. Эти квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны. Такой магический квадрат изображён в гравюре немецкого художника А. Дюрера «Меланхолия».

№ слайда 12
Описание слайда:

Общая информация

Номер материала: ДВ-377865

Похожие материалы