Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Билеты к зачету по геометрии (8 класс, 2 полугодие)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Билеты к зачету по геометрии (8 класс, 2 полугодие)

библиотека
материалов



Билеты к зачету по геометрии

8 класс

2 полугодие

Учитель: Рыбина О.С.

МОБУ «СОШ №72 с углубленным изучением математики»




































Билет 1:

1) Сформулировать и доказать теорему о вписанном угле.

2) Отрезки АВ и АС являются отрезками касательных к окружности с центром О,

проведёнными из точки А. Найдите угол ВАС, если середина отрезка АО лежит на окружности.

3) Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50 мм. Найдите отрезки, на которые гипотенуза делится высотой, проведённой из вершины прямого угла.



______________________________________________________________________________________

Билет 2:

1) Что такое отношение отрезков АВ и СD? В каком случае два отрезка пропорциональны двум другим? Когда и какие стороны треугольников называют сходственными? Дать определение подобных треугольников и коэффициента подобия.

Сформулировать и доказать теорему об отношении площадей подобных треугольников.

2) В треугольнике ABC сторона AB равна a, а высота СН равна h. Найдите сторону квадрата, вписанного в треугольник АВС так, что две соседние вершины квадрата лежат на стороне АВ, а две другие – соответственно на сторонах АС и ВС.

3) Точки P и Q – середины сторон АВ и АС треугольника АВС. Найдите периметр треугольника АВС, если периметр треугольника APQ равен 21 см.

______________________________________________________________________________________

Билет 3:

1) Что такое средняя линия треугольника? Сформулировать и доказать теорему о средней линии.

2) Прямые АВ и АС касаются окружности с центром О в точках В и С. Найдите ВС, если угол ОАВ=30°, АВ=5см.

3) (№ 667) Диаметр АА1 окружности перпендикулярен в хорде ВВ1 и пересекает её в точке С. Найдите ВВ1, если АС=4см, СА1=8см.



_____________________________________________________________________________________

Билет 4:

1) Сформулировать и доказать первый признак подобия треугольников.

2) Найдите углы ромба с диагоналями 2√3 и 2.

3) Угол между диаметром АВ и хордой АС равен 30°. Через точку С проведена касательная, пересекающая прямую АВ в точке D. Докажите, что треугольник ACD равнобедренный.






______________________________________________________________________________________

Билет 5:

1) Найти значения синуса, косинуса и тангенса для углов 30°, 45°, 60° и заполнить таблицу:

2) Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите АВ, если ОА = 2 см, а

r = 1,5 см.

a

30°

45°

60°

sin α




cos α




tg α




3) Хорда АВ стягивает дугу, равную 115°, а хорда АС – дугу в 43°. Найдите угол ВАС (рассмотреть два случая).





_________________________________________________________________






Билет 6:

1) Что такое касательная к окружности и точка касания? Доказать теорему о касательной к окружности и теорему о двух отрезках касательных к окружности, проведённых из одной точки.

2) Найдите:

А) sinα и tgα, если cosα = ½ Б) sinα и tgα, если cosα = 2/3

В) cosα и tgα, если sinα = √3/2 Г) cosα и tgα, если sinα = ¼

3) Прямые а и b пересечены параллельными прямыми АА1, ВВ1, СС1, причём точки А, В и С лежат на прямой а, а точки А1, В1, С1 – на прямой b. Доказать, что АВ:BC = A 1B1: B 1C 1.

______________________________________________________________________________________

Билет 7:

1) Сформулировать и доказать второй признак подобия треугольников.

2) Через точку М, взятую на медиане AD треугольника ABC, и вершину В проведена прямая, пересекающая сторону АС в точке К. Найдите отношение АК:KC, если М – середина отрезка AD.

3) Хорды AB и CD пересекаются в точке Е. Найдите ED, если:

А) АЕ=5, ВЕ=2, СЕ=2,5 Б) АЕ=16, ВЕ=9, СЕ=ЕD B) AE=0,2 , BE=0,5 , CE=0,4.





______________________________________________________________________________________

Билет 8:

1) Что такое синус , косинус, тангенс? Чему будет равен sin, cos, tg угла A в треугольнике ABC

(угол А – острый, угол С=90°). Доказать основное тригонометрическое тождество.

2) Через точку М, взятую на медиане AD треугольника ABC, и вершину В проведена прямая, пересекающая сторону АС в точке К. Найдите отношение АК:KC, если AM:MD = 1:2.

3) Докажите, что четырёхугольник – ромб, если его вершинами являются середины сторон:

А) Прямоугольника Б) Равнобедренной трапеции





______________________________________________________________________________________

Билет 9:

1) Рассмотреть взаимное расположение прямой и окружности (3 случая). Что такое секущая, касательная?

2) Из концов диаметра АВ данной окружности проведены перпендикуляры АА1 и ВВ1 к касательной, которая не перпендикулярна к диаметру АВ. Докажите, что точка касания является серединой отрезка А1В1.

3) Точки А и В разделяют окружность на две дуги, меньшая из которых равна 140°, а большая точкой М делится в отношении 6:5, считая от точки А. Найдите угол ВАМ.



______________________________________________________________________________________

Билет 10:

1) Сформулировать и доказать третий признак подобия треугольников.

2) В треугольнике, стороны которого равны 5 см, 12 см и 13 см, проведена высота к его большей стороне. Найдите отрезки, на которые высота делит эту сторону.

3) Точки М, N и P лежат соответственно на сторонах АВ, ВС и СА треугольника АВС, причем MN II AC, NP II AB. Найдите стороны четырёхугольника AMNP, если

АВ = 10 см, АС = 15 см, PN : MN = 2:3




______________________________________________________________________________________


Билет 11:

1) Доказать, что медианы треугольника пересекаются в одной точке, которая делит вершину в отношении 2:1, считая от вершины.

2) В треугольнике АВС медианы АА1 и ВВ1 пересекаются в точке О. Найдите площадь треугольника АВС, если площадь треугольника АВО равна S.

3)Стороны прямоугольника равны 3 см и √3 см. Найдите углы, которые образует диагональ со сторонами прямоугольника.



______________________________________________________________________________________

Билет 12:

1) Напишите два следствия теоремы о вписанном угле, сделайте к ним рисунки. Докажите теорему о произведениях хорд.

2) Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках В1, С1, а другая – в точках В2, С2. Докажите, что АВ1*АС1 = АВ2*AC2.

3) Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Доказать, что ОВ _I_ ОМ.




___________________________________________________________________________________

Билет 13:

1) Доказать, что высота прямоугольного треугольника, проведённая из прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.Какой отрезок называется средним пропорциональным для двух других отрезков?

Для треугольника АВС(угол С=90°, СD – высота) докажите следующие утверждения:

1. CD = √AD*DB 2. AC = √AB*AD

2) Найдите площадь равнобедренного треугольника с углом α при основании, если

боковая сторона равна b.

3) Через точку М, взятую на медиане AD треугольника ABC, и вершину В проведена прямая, пересекающая сторону АС в точке К. Найдите отношение АК:KC, если М – середина отрезка AD.

_____________________________________________________________________________________

Билет 14:

1) Что такое синус , косинус, тангенс? Чему будет равен sin, cos, tg угла A в треугольнике ABC (угол А – острый, угол С=90°). Доказать, что если острый угол одного прямоугольного треугольника равен острому углу другого, то sin, cos, tg этих углов равны.

2) Точки М, N и P лежат соответственно на сторонах АВ, ВС и СА треугольника АВС, причем MN II AC, NP II AB. Найдите стороны четырёхугольника AMNP, если: AM=AP, AB = a, AC = b.

3)Найдите площадь равнобедренного треугольника с углом α при основании, если основание равно а.



______________________________________________________________________________________

Билет 15:

1) Что такое вписанная окружность? Доказать, что в любой треугольник можно вписать окружность, притом только одну.

2) Биссектриса AD треугольника ABC делит сторону BC на отрезки CD и BD, равные соответственно 4,5 см и 13,5 см. Найдите АВ и АС, если периметр треугольника АВС равен 42 см.

3) В окружность вписан равнобедренный треугольник АВС с основанием ВС. Найдите углы треугольника, если дуга ВС = 102°.




______________________________________________________________________________________





Билет 16:

1) Доказать теорему о биссектрисе угла и теорему, обратную ей.

2) Докажите, что четырёхугольник – ромб, если его вершинами являются середины сторон:

А) Прямоугольника Б) Равнобедренной трапеции

3) В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см. найдите радиус окружности, вписанной в этот треугольник.




______________________________________________________________________________________

Билет 17:

1)Что такое описанная окружность? Докажите, что около любого треугольника можно описать окружность, притом только одну.

2) Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

3) Через точку А к данной окружности проведены касательная АВ ( В – точка касания ) и секущая АD, проходящая через центр О (D – точка на окружности, О лежит между А и D). Найдите угол BAD и угол ADB, если дуга BD = 110°20’.



____________________________________________________________________________________

Билет 18:

1) Доказать теорему о высотах треугольника. Что такое «Четыре замечательные точки треугольника»?

2) В треугольнике АВС медианы АА1 и ВВ1 пересекаются в точке О. Найдите площадь треугольника АВС, если площадь треугольника АВО равна S.

3) Высоты АА1 и ВВ1 равнобедренного треугольника АВС, проведённые к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС – серединный перпендикуляр к отрезку АВ.




____________________________________________________________________________________

Билет 19:

1) Что такое серединный перпендикуляр к отрезку? Доказать теорему о серединном перпендикуляре к отрезку и теорему, обратную ей.

2) В окружность вписан равнобедренный треугольник АВС с основанием ВС. Найдите углы треугольника, если дуга ВС = 102°.

3) На стороне CD параллелограмма ABCD отмечена точка Е. Прямые АЕ и ВС пересекаются в точке F. Найти:

А) EF и FC, если DE = 8 см, EC = 4 см, ВС = 7 см, АЕ = 10 см.

Б) DE и EC, если АВ = 8 см, AD = 5 см, CF = 2 см.


_____________________________________________________________________________

Билет 20:

1) Доказать теорему о биссектрисе угла. Сформулировать следствие о биссектрисах треугольника.

2) Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Доказать, что ОВ _I_ ОМ.

3) Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50 мм. Найдите отрезки, на которые гипотенуза делится высотой, проведённой из вершины прямого угла.





_____________________________________________________________________________


Билет 21:

1) Каким свойством должны обладать стороны описанного четырёхугольника? Каким свойством должны обладать углы вписанного четырёхугольника? Докажите эти свойства.

2) Найдите:

А) sinα и tgα, если cosα = ½ Б) sinα и tgα, если cosα = 2/3

В) cosα и tgα, если sinα = √3/2 Г) cosα и tgα, если sinα = ¼

3) Докажите, что можно описать окружность:

А) Около любого четырёхугольника;

Б) Около любой равнобедренной трапеции.

______________________________________________________________________________________

Билет 22:

1) Что такое отношение отрезков АВ и СD ? Когда и какие стороны треугольников называют сходственными? Дать определение подобных треугольников и коэффициента подобия. Доказать, что биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

2) Найдите углы ромба с диагоналями 2√3 и 2.

3) Треугольники АВС и А1В1С1 подобны, и их сходственные стороны относятся как 6:5. Площадь треугольника АВС больше площади треугольника А1В1С1 на 77 см2.

Найдите площади треугольников.


______________________________________________________________________________________

Билет 23:

1) Сформулировать и доказать теорему о вписанном угле.

2) Хорды AB и CD пересекаются в точке Е. Найдите ED, если:

А) АЕ=5, ВЕ=2, СЕ=2,5 Б) АЕ=16, ВЕ=9, СЕ=ЕD B) AE=0,2 , BE=0,5 , CE=0,4.

3) Точки А и В разделяют окружность на две дуги, меньшая из которых равна 140°, а большая точкой М делится в отношении 6:5, считая от точки А. Найдите угол ВАМ.





Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 18.11.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров106
Номер материала ДБ-365696
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх