1000954
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5 480 руб.;
- курсы повышения квалификации от 1 400 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до 28 февраля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

Инфоурок / Математика / Презентации / БІЛІМДІЛІК: Оқушыларға екі айнымалысы бар теңсіздіктер және олардың шешімдері туралы мәліметтер беру, екі айнымалысы бар теңсіздіктерді шешуді үйрету; ДАМЫТУШЫЛЫҚ: Оқушылардың логикалық ойлау және өз беттерімен есеп шығару қабілеттерін дамыту; ТӘР

БІЛІМДІЛІК: Оқушыларға екі айнымалысы бар теңсіздіктер және олардың шешімдері туралы мәліметтер беру, екі айнымалысы бар теңсіздіктерді шешуді үйрету; ДАМЫТУШЫЛЫҚ: Оқушылардың логикалық ойлау және өз беттерімен есеп шығару қабілеттерін дамыту; ТӘР

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
САБАҚТЫҢ ТАҚЫРЫБЫ: ЕКІ АЙНЫМАЛЫСЫ БАР ТЕҢСІЗДІКТЕР Орындаған:Қопанова Н.Л
Сабақтың түрі: Жаңа сабақ Сабақтың көрнекілігі: Интерактивті тақта, оқулық
Анықтама: Екі айнымалыдан тұратын теңсіздікті екі айнымалысы бар теңсіздік де...
1-мысал. теңсіздігін қарастырайық. Берілген теңсіздіктің шешімін табу үшін он...
Теңсіздіктің орындалуын тексеру үшін О﴾0;0﴿ нүктесін алып берілген теңіздікк...
у х 3 О 3 -3 -3 20-сурет 3-мысал. x² + у² ≤ 9 теңсіздігін қанағаттандыратын х...

Описание презентации по отдельным слайдам:

1 слайд САБАҚТЫҢ ТАҚЫРЫБЫ: ЕКІ АЙНЫМАЛЫСЫ БАР ТЕҢСІЗДІКТЕР Орындаған:Қопанова Н.Л
Описание слайда:

САБАҚТЫҢ ТАҚЫРЫБЫ: ЕКІ АЙНЫМАЛЫСЫ БАР ТЕҢСІЗДІКТЕР Орындаған:Қопанова Н.Л

2 слайд
Описание слайда:

3 слайд Сабақтың түрі: Жаңа сабақ Сабақтың көрнекілігі: Интерактивті тақта, оқулық
Описание слайда:

Сабақтың түрі: Жаңа сабақ Сабақтың көрнекілігі: Интерактивті тақта, оқулық

4 слайд
Описание слайда:

5 слайд
Описание слайда:

6 слайд Анықтама: Екі айнымалыдан тұратын теңсіздікті екі айнымалысы бар теңсіздік де
Описание слайда:

Анықтама: Екі айнымалыдан тұратын теңсіздікті екі айнымалысы бар теңсіздік деп атайды. Екі айнымалысы бар теңсіздік Мысалы, 3х+7у>9; -2у+5х≤0; х²-6у≥0 екі айнымалысы бар теңсіздіктер болып табылады. Екі айнымалысы бар теңсіздікті шешу берілген теңсіздікті дұрыс сандық теңсіздікке айналдыратын сандар жұбының жиынын табу немесе берілген теңсіздіктің шешімі жоқ екенін дәлелдеу болып табылады. Екі айнымалысы бар теңсіздікті шешу үшін мына алгоритмді қолданамыз: 1﴿ теңсіздікке сәйкес теңдеудің немесе функцияның түрін анықтаймыз 2﴿ ол теңдеудің немесе функцияның графигін координаталар жазықтығына салып, жазықтықты бөліктерге бөлеміз; 3﴿ жазықтықтың қай бөлігі теңсіздіктің шешімі болатынын анықтаймыз. Ол үшін жазықтықтың бір бөлігінен кез келген нүкте алып, оның координатасын берілген теңсіздікке қойып, дұрыстығын тексереміз; теңсіздік дұрыс болатын жазықтық бөлігінің нүктелер жиынын жіне теңсіздіктаңбасы қатаң емес жағдайда ﴾≥ немесе ≤﴿ функциясының графигін берілген екі айнымалысы бар теңсіздіктің шешімі ретінде аламыз.

7 слайд 1-мысал. теңсіздігін қарастырайық. Берілген теңсіздіктің шешімін табу үшін он
Описание слайда:

1-мысал. теңсіздігін қарастырайық. Берілген теңсіздіктің шешімін табу үшін оны түрінде жазып алайық. теңсіздігінің шешімі олып табылатын жазықтықтағы нүктелер жиынтығын анықтайық. теңдеуінің графигі координаталар осьтерін ﴾2;0﴿ және ﴾0;1﴿ нүктелерінде қиятын түзу болып табылады ﴾18-сурет﴿. Бұл түзу жазық-тықты екі жарты жазықтыққа бөледі. Теңсіздіктің шешімін табу үшін бір жазықтықтан кез келген нүкте алып, теңсіздіктің орындалуын тексереміз. Мысалы, М﴾4; 2﴿ нүктесін алып, оның координаталарын берілген теңсіздікке қоямыз: . Бұл теңсіздік дұрыс. Демек, М нүктесі тиісті жартыжазықтық берілген теңсіздіктің шешімі болады ﴾18-сурет﴿. 2-мысал. теңсіздігін қанағаттандыратын жазықтықтағы нүктелердің координаталарын анықтайық. Шешуі. теңдеуінің графигі – төбесі нүктесі болатын және тармақтары жоғары бағытталған парабола. Бұл парабола жазықтықты екі бөлікке бөледі.

8 слайд Теңсіздіктің орындалуын тексеру үшін О﴾0;0﴿ нүктесін алып берілген теңіздікк
Описание слайда:

Теңсіздіктің орындалуын тексеру үшін О﴾0;0﴿ нүктесін алып берілген теңіздікке қойсақ , 0≥﴾0-2﴿²+1 шығады, яғни теңсіздіктің орындалмайтынын аңғарамыз . Сондықтан координаталары у≥﴾x-2﴿²+1 теңсіздігін қанағаттандыратын нүктелер жиыны – парабола және параболаның тармақтарының арасында жаткан жазықтықтың барлық нүктелер жиыны 19-суретте штрихпен көрсетілген. у х 2 2 О 1 . . . М у х 2 1 5 5 . . . 18- сурет 19- сурет

9 слайд у х 3 О 3 -3 -3 20-сурет 3-мысал. x² + у² ≤ 9 теңсіздігін қанағаттандыратын х
Описание слайда:

у х 3 О 3 -3 -3 20-сурет 3-мысал. x² + у² ≤ 9 теңсіздігін қанағаттандыратын х және у-тің мәндерін табайық. Шешуі: Берілген теңсіздіктің шешуі квадраттарының қосындысының мәні 9-дан үлкен болмайтын сандардың жұптары болады. Координаталық жазықтыққа х² + у²= 9 теңдеуінің графигін саламыз. Сонда x² + y² ≤ 9 теңсіздігінің шешімі-радиусы 3-ке тең, ал сентірі координаталар басында жататын нүктелер жиынтығының координаталары ﴾20-сурет﴿.

10 слайд
Описание слайда:

11 слайд
Описание слайда:

12 слайд
Описание слайда:

Общая информация

Номер материала: ДБ-060053

Похожие материалы

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.