Инфоурок / Химия / Статьи / БУДУЩЕЕ УГЛЕДОБЫВАЮЩЕЙ ОТРАСЛИ ДОНБАССА.

БУДУЩЕЕ УГЛЕДОБЫВАЮЩЕЙ ОТРАСЛИ ДОНБАССА.


библиотека
материалов

БУДУЩЕЕ УГЛЕДОБЫВАЮЩЕЙ ОТРАСЛИ ДОНБАССА.


Донецкая общеобразовательная школа

I-III ступеней №89, Донецк, ул. Кирова 99

Учитель химии :

Быкова Ольга Александровна.



Добывают здесь черно золото.

Черно золото да из - под земли,

Чтобы счастливо люди жить могли…

Новосёлова Л.


Не секрет, что основой для промышленного роста Донбасса являлась угледобывающая промышленность, на ее основе развивались металлургия и энергетика Украины. Давайте рассмотрим подробнее состояние и перспективы угледобычи на Донбассе .

Ситуация с углем в мире

В середине прошлого столетия объемы производства чугуна и стали были мерой уровня развития страны. Сейчас это не так. Классическая черная металлургия морально устарела. Это — экологически грязный процесс, энергоемкий. Появились технологии прямого восстановления железа. Предприятия классической черной металлургии во многих местах мира стали убыточными. Тепловые электростанции, работающие на угле, дымят. Электроэнергия, произведенная на них, значительно дороже, чем электроэнергия, произведенная на гидроэлектростанциях или на атомных электростанциях. Означает ли это, что кокс и уголь стали ненужными? На первый взгляд может показаться, что это именно так. Уголь неуклонно и постоянно дешевеет на мировых рынках. Но все же. Спрос на уголь может возобновиться через 8-10 лет.

Ситуация в угледобывающей промышленности Донбасса. До начала полномасштабных военных действий на территории Донбасса проблемы в угледобывающей промышленности Донбасса были. Озвучу самые острые (для предприятий госсобственности) проблемы: 
—закупки оборудования по завышенным ценам,
—искусственно созданный профицит угля, 
—отсутствие технического перевооружения,
—вымывание денег из угольной промышленности.
Сейчас ситуация усугубилась тем, что ведутся военные действия и разрушается инфраструктура. Да, на территории ЛДНР осталось 2 млн. тонн уже добытого угля. Да, ополченцы контролируют 60% шахт. Но в каком состоянии эти шахты? 80 шахт из 136 не работают. А это больше половины. Большая Украина забросила те шахты, которые не попали в зону военных действий (где не было «сепаратизма» по их терминологии), и шахты на территориях, отбитых у ополчения. Как-то нелогично так поступать в условиях энергетического кризиса. Ну а что же происходит на территории ЛДНР? Тут ситуация тоже очень сложная. Действующие шахты можно перечислить по наименованиям. С одной стороны, ремонтные бригады пытаются ввести в строй разрушенные шахты (проходила информация, что в ДНР из 29 разрушенных шахт введено в строй около половины. За ноябрь месяц добыча составила 2,25 млн тонн угля. Еще в начале 2014 года добыча была 5 млн тонн в месяц. Столь малые объемы угля на Украине добывались в 1944 году, сразу после изгнания немецко-фашистских захватчиков.
Есть ли перспективы у угледобывающей промышленности Донбасса?

Перспективы есть, и немалые. Да, чем дольше осуществляется добыча, тем труднее становится добывать уголь. По мере эксплуатации шахты работы передвигаются вглубь. Это удлиняет производственные коммуникации, падает добыча. Отрицательные факторы такого рода ярко проявляются в отдельных звеньях технологической цепочки предприятия (вентиляция, транспортировка угля и пустой породы). В результате производительность шахты и ее экономические показатели ухудшаются. Это понятно. Кроме того, после 10-12 лет работы шахта истощает вскрытую часть угольных запасов. Поэтому на шахте необходимо произвести вскрытие и подготовку к эксплуатации расположенного ниже горизонта. Часто для этого нужна реконструкция, что требует крупных инвестиций. Кроме того, срок службы угледобывающего предприятия также жестко ограничен величиной запасов угольного поля. Средний срок службы шахты составляет около 40 лет. И многие шахты на Донбассе имеют именно такой срок работы. Но, приближается период окончания нефтяной цивилизации на Земле. Запасов нефти на планете хватит на 40-50 лет, газа на 60-70, угля – от 140 до 600 лет (по различным оценкам). Одним из основных источников энергии достаточно долго будет уголь. В соответствии с результатами исследований Федерального ведомства геологических наук и природных ресурсов (Россия) через 25 лет каменный уголь будет основным энергоносителем на планете. К 2030 году уже будет извлечено и использовано более половины запасов нефти, а запасов газа останется намного меньше, чем предполагают сегодня. Одним из основных источников энергии в долгосрочной перспективе за пределами нефтегазовой цивилизации будет уголь. Уголь — топливо будущего. Даже при условии высокой себестоимости добычи. Это -первое. 
Второе. Использовать уголь в качестве топлива, в общем-то, — кощунственно. Из угля можно производить газ, бензин, дизельное топливо, спирт, сорбенты и еще около четырехсот различных продуктов. Уголь можно перерабатывать на глубине методами микробиологии, получая метан. Он будет поступать на поверхность, а из него уже можно делать то, что необходимо. Готовыми хорошо разработанными технологиями превращения угля в газ обладает Китай. Кроме того, из «отходов» можно прессовать угольный кирпич. Можно делать из угля сорбенты. Перспективы есть.

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ХИМИЧЕСКОЙ ПЕРЕРАБОТКИ УГЛЯ

Пиролиз и коксование

До начала XX века пиролизом и коксованием каменного угля получали большинство химических продуктов. Эти процессы основаны на нагревании углей без доступа воздуха с целью их термической деструкции [6]. При этом протекают две основные группы химических реакций: деполимеризации органической массы угля с образованием органических молекул меньшей молекулярной массы и реакции вторичных превращений образующихся продуктов (конденсации, полимеризации, ароматизации, алкилирования и другие). Обе группы реакций протекают последовательно и параллельно. В конечном итоге в результате термохимических превращений образуются жидкие, газообразные и твердые продукты:

Пиролиз осуществляют в различных температурных интервалах, в зависимости от назначения получаемых продуктов. Низкотемпературный пиролиз (или полукоксование) проводится обычно при 500 - 600?С, а высокотемпературный пиролиз (или коксование) - при 900 - 1100?С. Современные процессы низкотемпературного пиролиза бурых углей ориентированы преимущественно на получение синтетического жидкого топлива и полукокса. Гидрогенизацией смол пиролиза можно получать моторные топлива, однако их стоимость пока выше, чем моторных топлив из нефти. Твердые продукты пиролиза бурого угля имеют более широкое применение в качестве облагороженного энергетического топлива, брикетированного топлива коммунально-бытового назначения, восстановителей в цветной и черной металлургии, компонентов шихты при получении металлургического кокса, а также углеродных сорбентов. Среди известных методов получения полукокса из бурого угля весьма перспективен для промышленного освоения предложенный с участием автора каталитический пиролиз в кипящем слое катализатора окисления. Важнейшим преимуществом технологии каталитического пиролиза является повышение экологической чистоты, обусловленное отсутствием смолообразования, резким уменьшением содержания канцерогенных веществ в твердом продукте, уменьшением объема газовых выбросов и концентрации в них вредных веществ.

При коксовании каменных углей получают кокс, используемый в основном в черной и цветной металлургии для выплавки металлов, а в качестве побочных продуктов получают парогазовую смесь, содержащую множество химических соединений. Путем конденсации и адсорбции из нее извлекают бензол, каменноугольную смолу, состоящую из смеси конденсированных ароматических и гетероциклических соединений, нафталин, фенолы, аммиак и прочие вещества. Всего в качестве товарных продуктов коксования производят около 250 химических веществ. Для коксования используют дорогостоящие спекающиеся угли, способные образовать кокс. С целью расширения сырьевой базы коксохимических производств и совершенствования технологии получения металлургического кокса предложены методы каталитического коксования. При выборе катализаторов исходили из учета двух основных этапов процесса коксования. Первый из них включает образование пластической массы (мезофазы) из спекающегося угля при нагреве шихты до 350 - 400?С. Дальнейшее повышение температуры сначала приводит к затвердеванию мезофазы , а затем ее кристаллизации, которая заканчивается при 1000 - 1200?С с получением товарного кокса.

В выполненных с участием автора работах было показано, что некоторые катализаторы, введенные в шихту в незначительном количестве, могут увеличить выход мезофазы и влиять на состав жидких продуктов, катализируя реакции перераспределения водорода и кислорода в процессе коксования. При этом катализатор ускоряет деструкцию кислородсодержащих молекул, обогащая мезофазу химическими соединениями, из которых образуется прочный кокс на последующей высокотемпературной стадии коксования. Кроме того, частицы катализатора могут выступать в качестве центров кристаллизации мезофазы, способствуя формированию прочного кокса с повышенным содержанием мелкозернистых структур.

Газификация

При высокотемпературной обработке твердого топлива в среде кислорода воздуха, водяного пара, диоксида углерода и водорода органические составляющие топлива нацело превращаются в газообразные продукты. Основные направления газификации угля и состав продуктов приведены на схеме:

К настоящему времени освоены различные модификации промышленных процессов газификации углей, наиболее распространенными из которых являются технологии Лурги (стационарный слой кускового угля), Винклера (кипящий слой угольных частиц), Копперс-Тотцека (пылеугольный поток), Тексако (водноугольная суспензия) и их различные модификации. На опытно-промышленом уровне сейчас отрабатывается около 20 технологий газификации угля нового поколения. Эффективность процессов газификации может существенно повышаться при использовании соответствующих катализаторов, позволяющих снижать температуру при сохранении высокой скорости процесса и регулировать состав продуктов.

Воздействие катализатора на процесс газификации твердого топлива иллюстрируется схемой:

Катализатор может ускорять как реакции прямого превращения углерода в газообразные соединения (маршрут 1), так и газофазные реакции продуктов термического превращения угля (маршрут 2). До настоящего времени преимущественно разрабатывали процессы каталитической газификации, основанные на ускорении реакций прямого превращения угля в газообразные соединения по маршруту 1. В этих случаях для эффективного воздействия катализатора необходимо обеспечить его хороший контакт с твердым сырьем. Для этого используют катализаторы, наносимые на поверхность угля, а также способные плавиться или возгоняться в условиях процесса, проникая в поры угля. Наиболее распространенными катализаторами процесса газификации углей являются соединения щелочных, щелочноземельных и некоторых переходных (Ni, Fe, Co) металлов.

Среди технологий, проходящих опытно-промышленную отработку, следует выделить в качестве наиболее перспективных процесс ЭКСОН - каталитическая газификация угля водяным паром в кипящем слое, процесс МОЛТЕН СОЛТ - парокислородная газификация при повышенном давлении в расплаве соды, процесс ПАТГАЗ - газификация при атмосферном давлении в расплаве железа. Применяемые расплавы играют роль теплоносителя и катализатора.

Применение катализаторов может быть сопряжено с появлением новых технологических проблем. Среди них следует выделить проблему разработки простых и надежных методов введения катализатора в реакционную смесь и извлечения его для повторного использования в процессе газификации. В выполненных с участием автора работах установлено, что эта проблема может решаться путем осуществления процесса газификации угля в кипящем слое частиц катализатора. В качестве каталитически активных материалов оказалось возможным использовать дешевые и доступные металлургические и котельные шлаки, которые содержат элементы (Fe, Ni, Mn и др.), способные катализировать реакции окисления, конверсии СО и углеводородов, метанирования. Такие каталитически активные материалы можно использовать в процессе газификации до их полного износа. В режиме циркуляции частиц мартеновского шлака при температурах 850 - 900?С и атмосферном давлении паровоздушной смеси степень конверсии угля в газообразные продукты составляет 90%, а интенсивность газификации превышает показатели известных технологий газификации, осуществляемых при аналогичных температурах и давлении.

Ожижение

Принципиальное различие в химическом составе угля и нефти заключается в разном соотношении водород/углерод (составляет около 0,7 для углей и порядка 1,2 для нефтей). Присоединением к углю дополнительного количества водорода можно получить "синтетическую нефть". Это достигается использованием молекулярного водорода или органических соединений, способных выступать в качестве доноров водорода. Лучшие результаты в ожижении угля получаются в присутствии катализаторов, активирующих молекулярный водород, и органических растворителей, способных легко отдавать атомы водорода (тетралин, крезол и другие).

Предложенный механизм каталитического ожижения угля можно представить следующей схемой:

Первоначальной стадией ожижения является превращение угля в так называемые асфальтены, представляющие собой высокомолекулярные соединения ароматической природы и содержащие большое количество гетероатомов. Образующиеся реакционноспособные фрагменты радикальной природы могут затем превращаться в стабильные продукты, присоединяя атомы водорода, либо полимеризоваться. Соотношение скоростей протекающих превращений определяется природой используемых катализаторов. Катализаторы, обладающие гидрирующей активностью, ускоряют реакции образования легких углеводородов. Катализаторы кислотного типа могут способствовать протеканию нежелательных реакций поликонденсации и полимеризации, приводящих к образованию высокомолекулярных продуктов.

В различных странах сейчас работает более 80 опытных установок ожижения угля. Однако в промышленном масштабе технологии прямого ожижения угля в настоящее время не используются вследствие ряда причин. Основные недостатки современных технологий каталитического ожижения угля обусловлены невысокой производительностью процесса, применением высоких давлений водорода, необходимостью выделения катализатора для повторного использования в процессе. Часть этих проблем может быть решена путем подбора дешевых катализаторов на основе рудных материалов. Их использование позволяет отказаться от трудоемкой и технически трудноосуществимой операции по извлечению катализатора из твердого шламового остатка процесса ожижения угля. Другим путем удешевления процесса ожижения является замена молекулярного водорода на синтез-газ (смесь СО и Н2). Это позволяет исключить ряд технологических стадий, связанных с получением водорода, таких как очистка синтез-газа, конверсия СО, выделение Н2 из газовой смеси.

Проведенные с участием автора исследования подтвердили эффективность применения железосодержащих рудных катализаторов (пирит, пирротит, магнетит) для ожижения канско-ачинских углей в среде водорододонорных растворителей. По своей активности они сопоставимы с промышленным алюмокобальтмолибденовым катализатором, применяемым в нефтепереработке. Этот неожиданный на первый взгляд результат объясняется тем, что процесс гидрогенизации угля в среде водорододонорного растворителя протекает по механизму опосредованного катализа. Суть этого механизма сводится к тому, что ожижение угля осуществляется преимущественно не молекулярным водородом, а путем переноса атомов водорода от молекул органического растворителя (например, тетралина, который при этом дегидрируется до нафалина):

уголь + тетралин уголь-Н2 + нафталин.

Роль катализатора в основном сводится к восстановлению утраченных Н-донорных свойств растворителя (в частности, к гидрированию нафталина с получением тетралина):

катализатор + Н2 Катализатор-Н2

катализатор-Н2 + нафталин

Катализатор + тетралин.

Для эффективного обеспечения данной функции катализатор может обладать даже умеренной гидрирующей активностью, в частности, присущей железосодержащим катализаторам.

Более благоприятная ситуация в плане промышленного освоения сложилась с технологиями, в которых совмещены процессы газификации угля до синтез-газа его и последующая переработка в метанол или жидкие углеводородные смеси. В промышленном масштабе на основе синтез-газа осуществляют крупнотоннажное производство следующих продуктов: метанола, жидких алифатических углеводородов и метана. Технологии синтеза жидких топлив из СО и Н2 прошли промышленную проверку в двух вариантах, известных как процесс Фишера-Тропша и процесс Мобил. Процесс Фишера-Тропша экономически мало выгоден для производства малооктановых бензинов вследствие низкой производительности катализаторов (0,3 - 0,7 т/м3 Кт в сутки) и низких октановых чисел получаемой бензиновой фракции (50 - 72). Технология Мобил, основанная на использовании высококремнеземестых цеолитов в качестве катализаторов превращения метанола в высокооктановый бензин, отличается более высокой производительностью, селективностью и качеством продукта (получаемый бензин имеет октановое число 91 - 98).

В принципе из синтез-газа можно получить почти любые органические продукты, производимые сейчас нефтехимическим синтезом. Возможные пути получения химических продуктов при каталитической переработке синтез-газа иллюстрируются следующей схемой:

Условия осуществления этих превращений уже известны, хотя эффективность ряда из этих процессов еще далека от желаемой.

ЗАКЛЮЧЕНИЕ

Хотя в настоящее время нефть является основным источником органического сырья, ограниченность ее мировых запасов и постоянный рост стоимости добычи вследствие вовлечения в эксплуатацию более труднодоступных месторождений стимулируют работы по созданию новых процессов химической переработки альтернативного органического сырья. Уголь, мировые запасы которого существенно выше, чем нефти и газа, рассматривается в перспективе в качестве одного из основных видов сырья для производства моторных топлив и продуктов органического синтеза.

Применение эффективных катализаторов и новых каталитических процессов позволит преодолеть многие недостатки, присущие традиционным способам химической переработки угля. Можно полагать, что катализ внесет в область углехимии такие же коренные преобразования, какие были осуществлены в нефтепереработке в 40-е годы этого столетия благодаря применению соответствующих катализаторов.

Рассмотренные в данной работе примеры показывают, что катализаторы позволяют повысить эффективность технологий пиролиза, газификации, ожижения углей. Развитие этих работ заложит основы нового поколения процессов химической переработки углей, для которых характерны повышенная интенсивность, селективность и экологическая чистота. При переработке такого "тяжелого" органического сырья, как каменные и бурые угли, предъявляются особые требования к используемым катализаторам по сравнению с процессами нефтепереработки и нефтехимии. Во многих случаях экономически оправданным и технически возможным представляется применение дешевых катализаторов одноразового использования. К ним относятся, в частности, различные рудные материалы, такие, как шлаки металлургической промышленности и энергетики, а также рудные концентраты и шламы.

И Я ВЕРЮ В БУДУЩЕЕ МОЕГО РОДНОГО ДОНБАССА!

ЛИТЕРАТУРА

1. Уилсон К.Л. Уголь - "мост в будущее". М.: Недра, 1985.

2. Кусумано Дж., Делла-Бетта Р., Леви Р. Каталитические процессы переработки угля. М.: Химия, 1984.

3. Кузнецов Б.Н. Катализ химических превращений угля и биомассы. Новосибирск: Наука, 1990.

4. Фальбе Ю.М. Химические вещества из угля. М.: Химия, 1984.

5. Кузнецов Б.Н. Органический катализ. Часть 2. Катализ в процессах химической переработки угля и биомассы. Учебное пособие. Красноярск: Изд-во Красноярского ун-та, 1988.

6. Химическая технология твердых горючих ископаемых /Под ред. Г. Н. Макарова, Г. Д. Харлампович. М.: Химия,1986.









Только до конца зимы! Скидка 60% для педагогов на ДИПЛОМЫ от Столичного учебного центра!

Курсы профессиональной переподготовки и повышения квалификации от 1 400 руб.
Для выбора курса воспользуйтесь удобным поиском на сайте KURSY.ORG


Вы получите официальный Диплом или Удостоверение установленного образца в соответствии с требованиями государства (образовательная Лицензия № 038767 выдана ООО "Столичный учебный центр" Департаментом образования города МОСКВЫ).

Московские документы для аттестации: KURSY.ORG


Общая информация

Номер материала: ДВ-508757

Похожие материалы



Очень низкие цены на курсы переподготовки от Московского учебного центра для педагогов

Специально для учителей, воспитателей и других работников системы образования действуют 60% скидки (только до конца зимы) при обучении на курсах профессиональной переподготовки (124 курса на выбор).

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Подайте заявку на интересующий Вас курс сейчас: KURSY.ORG