Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Дифференциальные уравнения в естествознании
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Дифференциальные уравнения в естествознании

библиотека
материалов

Дифференциальные уравнения в естествознании

«Великая книга природы написана на языке математики»

Галилей

Тема «Дифференциальные уравнения» - составляет один из основных разделов высшей математики, через который она реализует себя в решении практических задачах. Эта тема является очень значимой для получения естественно – научного образования. Для создания представлений о науке математики, как о необходимой для освоения каждым человеком, а также понимания важности этой науки для дальнейшего развития технического и общественного прогресса.

Выдающийся математик современности А.Н. Колмогоров писал «Математика – это то, посредством чего люди управляют природой и собой».
Для изучения достаточно многих химических, физических ,биологических технических и экономических явлений учёным удалось составить дифференциальные уравнения того или иного процесса, т.е.
перевести реальную задачу на язык математики , не теряя при этом основных свойств оригинала. В дальнейшем, решая эти уравнение, выводится функциональный закон описания изучаемой темы.

Дифференциальные уравнения играют огромную роль и в описании множества природных явлений. Они уникальные по содержанию и универсальные по применению в познания мира, повышая достоверность получаемых результатов.

Решение первых задач, приводящим к дифференциальным уравнениям, встречаются уде в 17 веке. К ним относится исследование Р. Декарта плоской кривой с применением свойств касательной, создание Дж. Неппером логарифмической таблицы.

Математические модели позволяют установить любые характеристики состояния процесса, качественные и количественные .

Например, скорость размножения бактерий, процесс самоиндукции, текущий в катушке после выключения постоянного напряжения, разность давлений при подъеме над уровнем моря.

С помощью дифференциальных уравнений можно вычислить движение планет солнечной системы вокруг Солнца. Решая такие , довольно сложные дифференциальные уравнения (т.к. планеты притягиваются не только к Солнцу, но и друг к другу), ученые могут достаточно точно предсказать моменты лунного и солнечного затмений.

И так мы убедились, что различных областях человеческой деятельности есть задачи, решение которых сводится с к дифференциальным уравнениям. Вот как можно описать методику их решения. При изучении какого-нибудь процесса нас всегда интересует изменение характеристик этого явление во времени, то есть некоторой величины (температуры, давления, массы и т. п.). Имея достаточное количество сведений о протекании этого процесса, мы сумеем построить его математическую модель. Получая информацию из экспериментальных данных или научных законов можно получить данные о скорости изменения любой величины у = у(t) в зависимости от времени t, то есть от производной Описание: http://festival.1september.ru/articles/534688/f_clip_image022.gif. Далее можно записать полученную информацию в виде дифференциального уравнения с неизвестной функцией у = у(t). Это уравнение и описывает наш изучаемый процесс с точки зрения его характеристики у. Решив его мы находим все возможные варианты изменения величины у.

Как показывает опыт развития различных наук, многие далёкие друг от друга по содержанию задачи приводят к решению одинаковых дифференциальных уравнений. Допустим, решение какой-то задачи сводится к дифференциальному уравнению, способы решения которого мы знаем, тогда задачу можно считать решённой. Творческий этап решения данной задачи состоит в составление дифференциального уравнения, следующий же этап – решений уравнения – имеет чисто техническую задачу.

Рассмотрим пример :

Чем выше над уровнем моря, тем становится разряжённее воздух , т.е. атмосферное давление уменьшается с высотой . Определить зависимость давления от высоты h. (p = p(h))

Решение задачи приводит к дифференциальному уравнению

Описание: dalin05.wmf

где ρ(h) – плотность воздуха на высоте h; g – ускорение свободного падения.

А вот пример радиоактивного распада: скорость уменьшения массы радиоактивного вещества пропорциональна количеству этого вещества. Следовательно, атмосферное давление Описание: http://www.sernam.ru/archive/arch.php?path=../htm/book_e_math/files.book&file=e_math_40.files/image014.gif как функция высоты Описание: http://www.sernam.ru/archive/arch.php?path=../htm/book_e_math/files.book&file=e_math_40.files/image003.gif над уровнем моря и масса радиоактивного вещества Описание: http://www.sernam.ru/archive/arch.php?path=../htm/book_e_math/files.book&file=e_math_40.files/image014.gif как функция времени Описание: http://www.sernam.ru/archive/arch.php?path=../htm/book_e_math/files.book&file=e_math_40.files/image003.gif удовлетворяют уравнению http://www.sernam.ru/archive/arch.php?path=../htm/book_e_math/files.book&file=e_math_40.files/image006.gif

Эти примеры наглядно демонстрируют, что одно и то же дифференциальное уравнение может быть математической моделью совершенно различных природных процессов.

Итак, мы видим, что в изучении теории дифференциальных уравнений математика, конечно прежде всего, связана с другими разделами математики, но также выступает как неотъемлемая часть естествознания, на которой основывается вывод и понимание любых закономерностей, составляющих содержание наук о природе.

Список литературы

Интернет http://festival.1september.ru/articles/534688/

1.Половинкина Ю.С. методичка «Приложения дифференциальных уравнений»:Архангельск,2007.

2.Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика: Учебное пособие: В кн. – М.: ООО «Издательство Новая волна», 2004.

3.Б.В. Соболь, Н.Т. Мишняков, В.М. Поркшеян «Практикум по высшей математике». – Ростов-на-Дону, Феникс, 2004.

4.Н.В. Богомолов. Практические занятия по математике. – Москва, Высшая школа, 1990.







Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Искусство математического моделирования состоит в умении адекватно перевести реальную задачу на математический язык, не теряя при этом основных свойств оригинала. Математические модели дают возможность установить качественные и количественные характеристики состояния процесса, увидеть общность процессов различной природы.

Опыт развития различных наук показывает, что многие далёкие друг от друга по содержанию задачи приводят к одинаковым или сходным дифференциальным уравнениям. Поэтому естественно разработать методы решения таких уравнений безотносительно к тем задачам, которые привели или могут привести к ним. Этим как раз и занимается математическая теория дифференциальных уравнений.

Автор
Дата добавления 09.05.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров580
Номер материала 518818
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх