Инфоурок Естествознание Научные работыДНК - материальный носитель наследственности

ДНК - материальный носитель наследственности

Скачать материал

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ЧЕЧЕНСКОЙ РЕСПУБЛИКИ

Государственное бюджетное профессиональное образовательное учреждение

"Чеченский Государственный Колледж"

 

 

 

 

 

 

Индивидуальный проект

по дисциплине «Естествознание»

на тему

«ДНК – материальный носитель наследственности»

 

 

 

 

 

 

 

 

                                                                     Выполнил:

                                                          ФИО студента:  Каруева Д. И.

                                                    Группа  ДОУ-919.2

                                       Научный руководитель:

                                                           А.А. Накаева

 

г.Грозный,2020г.


 

Содержание

Введение. 3

Глава 1. Структура ДНК.. 5

1.1  Как же работают гены?. 8

Глава 2. Передача генетической информации. 11

Заключение. 13

Список литературы.. 15

Приложения. 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

 

Наследуемые признаки заложены в материальных единицах, генах, которые располагаются в хромосомах клеточного ядра. Химическая природа генов известна с 1944 г.: речь идет о дезоксирибонуклеиновой кислоте (ДНК). Физическая структура была выяснена в 1953 г.  Двойная спираль этой макромолекулы объясняет механизм наследственной передачи признаков.

Присматриваясь к окружающему нас миру, мы отмечаем великое разнообразие живых существ – от растений до животных. Под этим кажущимся разнообразием в действительности скрывается удивительное единство живых клеток – элементов, из которых собран любой организм и взаимодействием которых определяется  его гармоничное существование. С позиции вида сходство между отдельными особями велико, и все-таки не существует двух абсолютно идентичных организмов (не считая однояйцовых близнецов). В конце XIX века в работах Грегора Менделя были сформулированы основные законы, определившие наследственную передачу признаков из поколения в поколение. В начале ХХ века в опытах Т.Моргана было показано, что элементарные наследуемые признаки обусловлены материальными единицами (генами), локализованными в хромосомах, где они располагаются последовательно друг за другом.

В 1944 г. работы Эвери, Мак-Леода и Мак-Карти определили химическую природу генов: они состоят из дезоксирибонуклеиновой кислоты (ДНК). Через 10 лет Дж. Уотсон и Ф. Крик предложили модель физической структуры молекулы ДНК. Длинная молекула образована двойной спиралью, а комплиментарное взаимодействие между двумя нитями этой спирали позволяет понять, каким образом генетическая информация точно копируется (реплицируется) и передается последующим поколениям.

Одновременно с этими открытиями ученые пытались проанализировать и «продукты» генов, т.е. те молекулы, которые синтезируются в клетках под их контролем. Работы Эфрусси, Бидла и Татума накануне второй мировой войны выдвинули идею о том, что гены «продуцируют» белки. Итак, ген хранит информацию для синтеза белка (фермента), необходимого для успешного осуществления в клетке определенной реакции. Но пришлось подождать до 60-х годов, прежде чем был разгадан сложный механизм расшифровки информации, заключенной в ДНК, и ее перевода в форму белка. В конце концов, во многом благодаря трудам Ниренберга (США), был открыт закон соответствия между ДНК и белками – генетический код.

Тема, «ДНК – материальный носитель наследственности» на мой взгляд, очень актуальна, так как достижения в этой области оказывают заметное влияние на другие отрасли наук о человеке – медицину, психиатрию, психологию, педагогику .

Цель проекта: узнать о том, что представляет собой ДНК, как происходит передача генетической информации из поколения в поколение.

Задачи проекта:

- изучение структуры ДНК;

- изучение передачи генетической информации.

Объектом исследования ДНК.

Предметом исследования является генетическая информация

         Методы исследования, использованные в данном проекте, это анализ научно-практической, научной, а так же популярной литературы по выбранной теме исследования.

 

 

 

 

 

 

 

 

Глава 1. Структура ДНК

 

Еще в 1869 году швейцарский биохимик Фридрих Мишер обнаружил в ядре клеток соединения с кислотными свойствами и с еще большей молекулярной массой, чем белки. Альтман назвал их нуклеиновыми кислотами, от латинского слова «нуклеус» - ядро. Так же, как и белки, нуклеиновые кислоты являются полимерами. Мономерами их служат нуклеотиды, в связи с чем нуклеиновые кислоты можно еще назвать полинуклеотидами.

Нуклеиновые кислоты были найдены в клетках всех организмов, начиная от простейших и кончая высшими. Самое удивительное, что химический состав, структура и основные свойства этих веществ оказались сходными у разнообразных живых организмов. Но если в построении белков принимают участие около 20 видов аминокислот, то разных нуклеотидов, входящих в состав нуклеиновых кислот, всего четыре.

В живых клетках содержится два  типа нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Как ДНК, так и РНК несут в себе нуклеотиды, состоящие из трех компонентов: азотистого основания, углевода, остатка фосфорной кислоты. Однако комбинация этих компонентов в ДНК и РНК несколько различны.

Фосфорная кислота в молекулах ДНК и РНК одинакова. Углевод же имеется в двух вариантах: у нуклеотидов ДНК – дезоксирибоза, а у нуклеотидов РНК – рибоза. И рибоза, и дезоксирибоза – пятичленные, пятиуглеродистые соединения – пентозы. У дезоксирибозы, в отличие от рибозы, лишь на один атом кислорода меньше, что и определяет ее название, так как дезоксирибоза в переводе с латинского означает лишенная кислорода рибоза.

Строгая локализация дезоксирибозы в ДНК, а рибозы в РНК, как раз и определяет название этих двух видов нуклеиновых кислот.

Третий компонент нуклеотидов ДНК и РНК – азотистые соединения, то есть вещества, содержащие азот и обладающие щелочными свойствами. В нуклеиновые кислоты входят две группы  азотистых оснований.

Одни из них относятся к группе пиримидинов, основу строения которых составляет шестичленное кольцо, а другие к группе пуринов, у которых к пиримидинову кольцу присоединено еще и пятичленное кольцо.

В состав молекул ДНК и РНК входят два разных пурина и два разных пиримидина. В ДНК имеются пурины – аденин, гуанин и пиримидиныцитозин, тимин. В молекулах РНК те же самые пурины, но из пиримидинов – цитозин и вместо тимина – урацил. В зависимости от содержания того или иного азотистого основания нуклеотиды называются адениловыми, тимиловыми, цитозиловыми, урациловыми, гуаниловыми.

Как же соединяются между собой нуклеотиды в длинные полинуклеотидные цепи?

Оказывается, что такое соединение осуществляется путем установления связи между остатком молекулы фосфорной кислоты одного нуклеотида и углеводом другого. Образуется сахаро-фосфорный скелет молекулы полинуклеотида, к которому сбоку один за другим присоединяются азотистые основания.

Если учесть, что в каждой нуклеиновой кислоте по четыре вида азотистых оснований, то можно представить себе множество способов расположения их в цепи, подобно тому, как можно в самой разной последовательности нанизать на нитку бусинки четырех цветов – красные, белые, желтые. Зеленые.

Последовательность расположения нуклеотидов в цепях молекул нуклеиновых кислот  так же, как и аминокислот в молекулах белков, строго специфична для клеток разных организмов, то есть носит видовой характер.

ДНК представляет свою двойную спираль.

Полинуклеидные цепи достигают гигантских размеров. Вполне понятно, что в связи с этим они так же, как и белки, определенным образом упакованы в клетке.

Модель структуры молекулы ДНК впервые создали биохимики из Кембриджского университета в Англии Джеймс Уотсон и Френсис Крик. Было показано, что молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой, с образованием двойной спирали.

Причем контакты существуют между обеими полинуклеотидными цепями, точнее, между пурином одного нуклеотида и пиримидином другого. Так что внешне молекулу ДНК можно представить как своего рода перекрученную веревочную лестницу.

Образование связей в молекуле ДНК – процесс строго закономерный. Адениловый нуклеотид  может образовывать связи лишь с тимиловым, а гуаниловый только с цитозиловым.

Эта закономерность получила название принципа комплиментарности, то есть дополнительности. В самом деле, такая строгая последовательность  в выборе пары наводит на мысль, что в двойной молекуле ДНК аденин как бы дополняет тимин и наоборот, а гуанин соответственно – цитозин, как две половинки разбитого зеркала.

Принцип комплиментарности позволяет понять механизм уникального свойства молекул ДНК – их способность самовоспроизводиться. ДНК – это единственное вещество в живых клетках, обладающее подобным свойством. Процесс самовоспроизведения молекул ДНК происходит при активном участии ферментов. Особые расплетающие белки последовательно как бы проходят вдоль системы водородных связей, соединяющих азотистые основания обеих полинуклеотидных цепей, и разрывают их.

Образовавшиеся в результате одиночные полинуклеотидные цепи ДНК достраиваются согласно принципу комплиментарности с помощью фермента за счет свободных нуклеотидов, всегда находящихся в цитоплазме и ядре. Напротив гуанилового нуклеотида  становится свободный цитозиловый нуклеотид, а напротив цитозилового, в свою очередь, гуаниловый и так далее. Во вновь образовавшейся цепи возникают углеводно-фосфатные и водородные связи. Таким образом, в ходе самовоспроизведения ДНК из одной молекулы синтезируются две новые.

ДНК в клетке локализована в основном в ядре, в его структурных компонентах – хромосомах.

 

1.1  Как же работают гены?

 

Биосинтез белков, протекающий под генетическим контролем, - это только начало сложных, многоступенчатых биохимических процессов клетки.

При изучении вегетативно размножающихся растений получены доказательства того, что отдельные части организма, такие как клубень, лист, луковица, черенок и так далее, дают начало нормальному растению. А это значит, что все клетки данного организма несут полную генетическую информацию, так же как и исходная оплодотворенная яйцеклетка, из которой развивается животное.

Вместе с тем в любом организме содержатся дифференцированные клетки с определенной формой и функцией. Например, у человека есть клетки нервные, мышечные, половые и т.д. Но, несмотря на то, что каждая клетка нашего тела несет полную генетическую информацию, то есть полный набор генов, полученных от родителей, функционируют лишь определенные гены, остальные находятся в неактивном состоянии. Каким же образом в клетке регулируется деятельность тех или иных генов?

Во всех процессах жизнедеятельности клетки роль биологических катализаторов играют ферменты. Без их участия не протекает практически ни одна химическая реакция синтеза или распада веществ. В каждой клетке (с ее характерными функциями) должны находиться регуляторные механизмы, контролирующие не только качественный состав ферментов, но и их количество.

В противном случае беспрерывно синтезируемые макромолекулы белков накапливались бы в клетке ненужным балластом, загромождая ее.

И действительно, подобный регуляторный механизм был обнаружен в клетках бактерий в 1961 году французскими учеными Франсуа Жакобом и  Жаком Моно.

Что же это за механизм?

Ф. Жакоб и Ж. Моно доказали, что не все гены бактерий одинаковы по своему назначению. 

Одна группа – структурные гены, выдающие информацию о синтезе определенных полипептидных цепей, другая – регуляторные гены, ведающие активностью структурных генов путем их «включения» и «выключения».

Регуляторные гены представлены  геном-оператором, непосредственно сцепленным с группой структурных генов, и геном-регулятором, который может находиться в некотором отдалении от них.

 Ген-оператор с группой регулируемых им структурных генов был назван опероном.  Оперон служит единицей транскрипции, то есть с него списывается  одна молекула и-РНК.

Ген регулятор действует не путем непосредственного контакта со структурными генами, а при помощи белка репрессора.

При наличии достаточно накопившихся молекул синтезируемого вещества белок-репрессор, соединяясь с этими молекулами, активизируется и связывается с геном-оператором. В результате синтез данного вещества прекращается.

Свое название белок-репрессор получил из-за того, что подавляет деятельность гена-оператора, то есть ставит его в положение «выключено».

При малом количестве синтезируемых молекул белок-репрессор остается неактивным. В таких условиях действие оперона – гена-оператора и структурных генов – не подавляется, и синтез будет продолжаться беспрепятственно.


 

Глава 2. Передача генетической информации

 

Как известно, особенности, характеризующие потомков, передаются им от родителей через половые клетки: мужскую – сперматозоид и женскую – яйцеклетку.

Слияние их при оплодотворении приводит к образованию единой клетки зиготы, из которой развивается зародыш человека.

Очевидно, что именно в этих двух половых клетках и в образовавшейся при их слиянии зиготе хранится наследственная информация о физических, биохимических и физиологических свойствах, с которыми появляется новый человек.

Материальной основой наследственности служат нуклеиновые кислоты, а именно ДНК. Но каким же образом генетическая информация передается от родителей к потомству? Как известно, новые клетки появляются в результате деления исходных материнских.

Для большинства клеток характерно физиологически полноценное клеточное деление, состоящее из ряда фаз, во время которых ядро претерпевает закономерные изменения, в результате чего образуются два ядра, совершенно идентичные исходному.

Цитоплазма при этом делится на две полвины. Такое сложное деление получило название митоза, и характерно оно для клеток тела, то есть соматических клеток.

Однако, в организмах растений, животных и человека, помимо соматических, имеются и половые клетки. Их образование происходит в результате особого деления.

Преобразование же, которое вызывается этим делением, получило название мейоза. (Подробнее см. п.2, п/п 2.2)

Во время и митоза, и мейоза ядро теряет округлые очертания и в нем отчетливо вырисовываются  его структурные компоненты, называемые хромосомами. Хромосомы имеют самые различные формы: палочек, коротких стерженьков, капель и т.д. (Подробнее см. п.2)


 

Заключение

 

Изучение генетики человека, несмотря на всю сложность, важно не только с точки зрения науки. Трудно переоценить и прикладное значение проводимых исследований.

Достижения в этой области оказывают заметное влияние на другие отрасли наук о человеке – медицину, психиатрию, психологию, педагогику.

В частности, велика роль развивающейся генетики человека в решении проблем наследственных болезней. Современные данные свидетельствуют, что человеком наследуются многие болезни, такие, как несвертываемость крови, цветовая слепота, ряд психических заболеваний. Кроме того, генетика человека призвана решать и другие вопросы.

Значение развития генетики человека очевидно. Можно с полной уверенностью сказать, что, например, в молекулах ДНК клеток человека запрограммирована генетическая информация, контролирующая каждый миг нашей жизни. Это касается здоровья, нормального развития, продолжительности жизни, наследственных болезней, сердечно-сосудистых заболеваний, злокачественных опухолей, предрасположенности к тем или иным инфе6кционным заболеваниям, старости и даже смерти.

Если выделить из ядра одной клетки человека все генетические молекулы ДНК и расположить их в линию одна за другой, то общая длина этой линии составит семь с половиной сантиметров. Такова биохимическая рабочая поверхность хромосом. Это сконцентрированное в молекулярной записи наследие веков прошедшей эволюции.

Правильно и образно сказал об этом в свое время в романе «Лезвие бритвы» писатель Иван Ефремов: «Наследственная память человеческого организма – результат жизненного опыта неисчислимых поколений, от рыбьих наших предков до человека, от палеозойской эры до наших дней. Эта инстинктивная память клеток и организма в целом есть тот автопилот, который автоматически ведет нас через все проявления жизни, борясь с болезнями, заставляя действовать сложнейшие автоматические системы нервной, химической, электрической и невесть какой еще регулировки.  Чем больше мы узнаем биологию человека, тем более сложные системы мы в ней открываем».

Исследования последних лет доказали, что любая живая клетка, в том числе и клетка человеческого организма, представляет собой целостную систему, все составные элементы которой обнаруживают тесное взаимодействие между собой и окружающей средой, оказывающей на гены огромное влияние. Поэтому различают два понятия: генотип – комплекс всех наследственных фактов – генов, получаемых потомками от родителей, и фенотип – совокупность признаков, возникающих при взаимодействии генотипа и внешней среды.

Следовательно,  в формировании фенотипа важны как генотип, так и внешняя среда, в которой происходит развитие особи. Без этого взаимодействия невозможна была бы жизнь, связанная с реализацией генетической информации, заключенной в нуклеиновых кислотах.

Закономерности генетики в большинстве случаев носят универсальный характер. Они одинаково важны для растений, для животных. Велико их значение и для человека.

 

 

 

 

 

 

 

 

 

 

Список литературы

 

1.    Уткин А.И. Глобализация: процесс и осмысление. – M.: Логос, 2016. – С. 70-73

2.     ГЕНЕТИКА И НАСЛЕДСТВЕННОСТЬ. Сборник статей. Г.34. Пер. с франц. М. 2018. – С.215-298 

3.    ОБЩАЯ ГЕНЕТИКА. Алихонян С. И. И др. М.: Высшая школа.  2015.- С.25-38

4.    .  БИОЛОГИЧЕСКИЙ ЭНЦЕКЛОПЕДИЧЕСКИЙ СЛОВАРЬ «БОТАНИКА: Морфология и анатомия растений. Васильев А.Е. М.: Просвещение, 2018 г. – С.15-67

5.     Любищев А.А. О постулатах современного селектогенеза. Проблемы эволюции. Новосибирск: Наука, 2017. Т. 3. С. 31–56.

6.    Костерин О.Э., Колесникова Т.Д. О чем писал Дарвин // Вестник ВОГиС. 2019. Т. 13. No 2. С. 448– 479.

7.     Тимофеев Ресовский Н.В., Воронцов И.Н., Яблоков А.В. Краткий очерк теории эволюции. М.: Наука, 2017. 297 с.

8.     Дубинин Н.П. Общая генетика. М.: Наука, 2016. 560 с.

9.     Грант В. Эволюционный процесс: Критический обзор эволюционной теории / Пер. с англ. М.: Мир, 2015. 488 с.

10. Ламарк Ж.Б. Избранные произведения (в 2 т.). М.: Изд во АН СССР, 2018. 968 с.

11. Берг Л.С. Труды по теории эволюции, Л.: Наука, 2018. 387 с.

12.                        Корочкин Л.И. Онтогенез, эволюция и гены // Природа. 2019. No 7. С. 10– 19.

13.                        Ли Ч. Введение в популяционную генетику. М.: Мир, 2018.

14.                        http://www.languages-study.com/demography/demography-tendencies.html

15.                        www.economics.ru


Приложения

 

http://ok-t.ru/studopediasu/baza2/451242753906.files/image067.jpg

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "ДНК - материальный носитель наследственности"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Садовод

Получите профессию

Секретарь-администратор

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 661 512 материалов в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Контрольная работа №3 Естествознание с методикой преподавания
  • Учебник: «Естествознание (базовый уровень)», Габриелян О.С., Остроумов И.Г., Пурышева Н.С. и др.
  • Тема: ГЛАВА I. МИКРОМИР. АТОМЫ. ВЕЩЕСТВА. РЕАКЦИИ
  • 24.11.2021
  • 358
  • 2
«Естествознание (базовый уровень)», Габриелян О.С., Остроумов И.Г., Пурышева Н.С. и др.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 25.11.2021 739
    • DOCX 102.5 кбайт
    • 13 скачиваний
    • Оцените материал:
  • Настоящий материал опубликован пользователем Накаева Аминат Асланбековна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Накаева Аминат Асланбековна
    Накаева Аминат Асланбековна
    • На сайте: 6 лет и 11 месяцев
    • Подписчики: 4
    • Всего просмотров: 19900
    • Всего материалов: 14

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Технолог-калькулятор общественного питания

Технолог-калькулятор общественного питания

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Руководство творческими, театральными и концертными организациями

Директор (генеральный директор)

600 ч.

9840 руб. 5600 руб.
Подать заявку О курсе
  • Сейчас обучается 54 человека из 26 регионов
  • Этот курс уже прошли 60 человек

Курс повышения квалификации

Современная иммунология инфекций: принципы профилактики и диагностики

72 ч.

1750 руб. 1050 руб.
Подать заявку О курсе

Курс повышения квалификации

Экзистенциальная психология: техники экзистенциального подхода в психологическом консультировании

36/72/108 ч.

от 1580 руб. от 940 руб.
Подать заявку О курсе
  • Сейчас обучается 47 человек из 34 регионов
  • Этот курс уже прошли 37 человек

Мини-курс

От романтизма к современности: шедевры и новаторство

5 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Преодоление расстройств: путь к психическому здоровью"

3 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Детско-родительские отношения: эмоциональный аспект

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 32 человека из 20 регионов