Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Элективный курс "Функции помогают уравнениям"

Элективный курс "Функции помогают уравнениям"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs


Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/

  • Математика

Поделитесь материалом с коллегами:



Элективный курс

«Функции помогают уравнениям»


Содержание



  1. Пояснительная записка________________________________________3

  2. Структура курса______________________________________________4

  3. Основные методические особенности курса.______________________4

  4. Формы организации учебных занятий.___________________________5

  5. Формы контроля._____________________________________________5

  6. Планируемые результаты.______________________________________6

  7. Основное содержание курса.____________________________________6

  8. Тематическое планирование.____________________________________8

  9. Литература.___________________________________________________9

























ПОЯСНИТЕЛЬНАЯ ЗАПИСКА



Данный элективный курс «Функции помогают уравнениям» является предметно- ориентированным и предназначен для расширения теоретических и практических знаний учащихся в 10-11 классах.

Функциональная линия просматривается в курсе алгебры, начиная с 7 класса. Возникает потребность обобщить, допол­нить и систематизировать вопросы, связанные с областью опре­деления функции, множеством значений, четностью и нечетно­стью функций. Многие задания ЕГЭ требуют аккуратного при­менения вопросов, связанных с периодичностью функций, их монотонностью, нахождением промежутков убывания и возрас­тания, точек экстремума и экстремумов функций. К 11 классу у обучающихся накапливается существенный арсенал различных математических функций, в курсе информа­тики они получают представление еще о целом ряде математи­ческих функций.

В последние годы в связи с появлением новых форм итоговой аттестации обучающихся особенно важным становится творческое и осмысленное освоение идей функциональной зависимости.

На ЕГЭ появились новые виды заданий, решение которых не возможно без усвоения свойств функций.

Элективный курс «Функции помогают уравнениям» ориентирован на изучение и применение разнообразных свойств функции при решении уравнений и неравенств.

В ходе изучения элективного курса значительное внимание нужно уделить самостоятельной работе учащегося. Поэтому в большинстве тем, предлагаемых для изучения, помещены материалы для самостоятельной работы учащегося.

Цель данного элективного курса – систематизация приемов использования свойств функций при решении уравнений и неравенств. Представить единым целым все вопросы, связанные с применением свойств матема­тических функций при решении самых разнообразных матема­тических задач.

Задачи курса:

  • овладение системой знаний о свойствах функций;

  • формирование логического мышления учащихся;

  • формирование опыта творческой деятельности учащихся через исследовательскую деятельность при решении нестандартных задач;

  • формирование навыка работы с научной литературой, использования различных интернет-ресурсов;

  • развитие коммуникативных и общеучебных навыков работы в группе, самостоятельной работы, умений вести дискуссию, аргументировать ответы и т.д.

  • формирование устойчивого интереса к предмету, выявление и развитие математических способностей, ориентация на профессии, существенным образом связанные с математикой формированию логического мышления учащихся;

  • подготовка учащихся к сдаче ЕГЭ и поступлению в ВУЗы;

  • повысить математическую культуру учащихся при решении уравнений и неравенств с использованием свойств функций.

Курс имеет общеобразовательное значение, спо­собствует развитию логического мышления учащихся. Формальная цель данного элективного курса – подготовить выпускников средней школы к сдаче ЕГЭ и продолжению образования в вузах, где дисциплины математического цикла относятся к числу ведущих, профилирующих.

Программа данного элективного курса ориентирована на приобретение определенного опыта решения задач, связанных со знанием свойств функции. Изучение данного курса тесно связано с такими дисциплинами, как алгебра, алгебра и начала анализа.


Структура курса.

Данный курс рассчитан на 68 часа (34 часа в 10 классе, 34 часа в 11 классе). Включенный в программу материал предполагает повторение и углубление следующих разделов алгебра, алгебра и начала анализа:

  • Способы задания функции. Область ее определения и область значения функции.

  • Основные свойства функций (четность и нечетность, периодичность, монотонность).

  • Использование области определе­ния и множества значений функций при решении уравне­ний.

  • Применение различных свойств функции к решению уравнений.

  • Применение свойств функций к решению неравенств.

  • Нестандартные задания по теме «Функции помогают уравнениям».


Основные методические особенности курса.


  1. Подготовка по тематическому принципу, соблюдая «правила спирали»  от простых типов заданий до заданий повышенной сложности;

  2. Работа с тематическими тестами, выстроенными в виде логически взаимосвязанной системы, где из одного вытекает другое, т.е. правильно решенное предыдущее задание готовит понимание смысла следующего; выполненный сегодня тест готовит к пониманию и правильному выполнению завтрашнего и т. д.;

  3. Работа с тренировочными тестами в режиме «теста скорости»;

  4. Работа с тренировочными тестами в режиме максимальной нагрузки, как по содержанию, так и по времени для всех школьников в равной мере;

  5. Максимальное использование наличного запаса знаний, применяя различные «хитрости» и «правдоподобные рассуждения», для получения ответа простым и быстрым способом.


Формы организации учебных занятий.


Формы проведения занятий включают в себя лекция учителя, беседа, практикум, консультация, работа с компьютером. Основной тип занятий  исследовательский или частично – поисковый. Каждая тема курса начинается с постановки задачи. Теоретический материал излагается в форме мини лекции. После изучения теоретического материала выполняются практические задания для его закрепления. Занятия строятся с учётом индивидуальных особенностей обучающихся, их темпа восприятия и уровня усвоения материала. Контрольные замеры обеспечивают эффективную обратную связь, позволяющую обучающим и обучающимся корректировать свою деятельность. Систематическое повторение способствует более целостному осмыслению изученного материала, поскольку целенаправленное обращение к изученным ранее темам позволяет учащимся встраивать новые понятия в систему уже освоенных знаний.


Формы контроля.


  • Уроки самооценки и оценки товарищей

  • Презентация учебных проектов

  • Тестирование

  • Контрольные работы

  • Индивидуальное домашнее задание

  • Защита проектов по выбранным темам изучаемого курса.


Планируемые результаты.


В результате изучения данных тем учащиеся должны знать:

  • понятие функции;

  • способы задания функции;

  • методы решения более сложных задач, применяя характерные свойства функций (область определения и множества значений функции; четность и нечетность, периодичность функции; свойство монотонности функций)

  • способы построения графиков функций, чтение графиков.


уметь: 

  • решать задачи, связанные с областью опре­деления функции, множеством значений, четностью и нечетно­стью функций, уравнения и неравенства с использованием свойств функций;

  • решать задачи на наименьшее и наибольшее значение функции;

  • строить графики функций с использованием свойств функций;

  • исследовать функцию по заданному графику.


Учащийся должен владеть:

  • анализом и самоконтролем;

  • исследованием ситуаций, в которых результат принимает те или иные количественные или качественные формы.


Изучение данного курса дает учащимся возможность:

  • повторить и систематизировать ранее изученный материал школьного курса математики;

  • освоить основные приемы решения задач;

  • овладеть навыками построения и анализа предполагаемого решения поставленной задачи;

  • познакомиться и использовать на практике нестандартные методы решения задач;

  • повысить уровень своей математической культуры, творческого развития, познавательной активности;

  • познакомиться с возможностями использования электронных средств обучения, в том числе Интернет-ресурсов;

  • усвоить основные приемы и методы решения уравнений, неравенств, систем уравнений с параметрами;

  • применять алгоритм решения уравнений, неравенств, содержащих параметр;

  • проводить полное обоснование при решении задач с параметрами;

  • овладеть исследовательской деятельностью.


При решении задач данного курса одновременно активно реализуются основные методические принципы:

  • принцип параллельности – следует постоянно держать в поле зрения несколько тем, постепенно продвигаясь по ним вперед и вглубь;

  • принцип вариативности – рассматриваются различные приемы и методы решения с различных точек зрения: стандартность и оригинальность, объем вычислительной и исследовательской работы;

  • принцип самоконтроля – невозможность подстроиться под ответ вынуждает делать регулярный и систематический анализ своих ошибок и неудач;

  • принцип регулярности – увлеченные математикой дети с удовольствием дома индивидуально исследуют задачи, т. е. занятия математикой становятся регулярными, а не от случая к случаю на уроках.

  • принцип последовательного нарастания сложности.


Основное содержание курса.


Тема 1. Способы задания функции. Область ее определения и область значения функции

Определение функции, графика функции. Способы задания функций: графический, аналитический, табличный, параметрический, словесный. Область определения функции. Область значения функции. Историческая справка.

Основная цель – систематизировать и обобщить знания обучающихся по теме «Функция», полученные ими в 7-10 классах; рассмотреть способы задания функций; дать историческую справку о введении термина «функция» и «график функции»; рассмотреть примеры на нахождение области определения и множества значений функции.

Тема 2. Основные свойства функций

Наибольшее и наименьшее значение функции. Четные и нечетные функции. Периодические функции. Свойство монотонности функций.

Основная цель – повторить основные свойства функции; научить обучающихся применять известные им свойства при исследовании более сложных функций и при решении задач на нахождение наибольшего и наименьшего значений функции.

Тема 3. Использование области определе­ния и множества значений функций при решении уравне­ний

Использование области определе­ния функций при решении иррациональных, логарифмических, дробно рациональных уравнений. Графический способ решения уравнений.

Использование множества значе­ний функций при решении урав­нений. «Метод мажорант» (метод крайних). Равносильность уравнений. Решение задач с параметрами с учетом области значений функции.

Основная цель – научить применять равносильность уравнений при решении уравнений; свойства функций при решении уравнений, содержащих параметры.

Тема 4. Применение различных свойств функции к решению уравнений


Метод оценок при решении урав­нений. Графический метод. Метод крайних значений Применение стандартных нера­венств при решении уравнений.

Основная цель – выработать умение решать уравнения различного уровня сложности наиболее рациональным способом.

Тема 5. Применение свойств функций к решению неравенств

Использование области определе­ния функций при решении иррациональных, логарифмических, дробно рациональных неравенств. Метод оценки при решении неравенств. Нахождение целого количества решений неравенства.

Основная цель – повторить известные способы решения неравенств. Показать на примерах решение сложных неравенств различными способами, связанных с необходимостью использования области определе­ния и множества значений функции

Тема 6. Нестандартные задания по теме «Функции помогают уравнениям» Решение уравнений и неравенств части С, предлагаемых на ЕГЭ.

Основная цель – расширить и систематизировать знания учащихся по теме «Функция», создать условия для более осмысленного понимания теоретических сведений и применению их на практике.

Тема 7. Подготовка к ЕГЭ



КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ



Тема урока

кол-во часов

1

Способы задания функции

1

2

Область определения и множество значений функции.

2

3

Задачи на нахождение области определения и множества значений функции.

3

4

Наибольшее и наименьшее значение функции.

3

5

Четные и нечетные функции.

2

6

Периодические функции.

2

7

Свойство монотонности функций.

2

8

Использование области определе­ния функций при решении уравне­ний.

3

9

Использование множества значе­ний функций при решении урав­нений.

2

10

Применение различных свойств функции к решению уравнений.

2

11

Метод оценок при решении урав­нений.

3

12

Применение стандартных нера­венств при решении уравнений.

1

13

Применение свойств функций к решению неравенств.

2

14

Тестовые задания по теме «Функ­ции и их свойства»

2

15

Нестандартные задания по теме «Функции помогают уравнениям»

1

16

Подготовка к ЕГЭ. Контрольная работа в формате ЕГЭ.

3


Всего

34







СПИСОК ЛИТЕРАТУРЫ



  1. Математика.10-11 классы. Функции помогают уравнениям: элективный курс / авт.-сост. Ю.В. Лепехин. – Волгоград: Учитель, 2009. – 187с.

  2. ЕГЭ 2012. Математика. ЕГЭ. 3000 задач с ответами по математике. Все задания группы В. Под ред. Семенова А.Л., Ященко И.В. М.: Экзамен, 2012 - 544 с.

  3. ЕГЭ 2012. Математика. Задачи с параметрами при подготовке к ЕГЭ. Высоцкий В.С. М.: Экзамен, 2011 - 316 с.

  4. ЕГЭ 2012. Математика. 1000 задач с ответами и решениями по математике. Все задания группы С. Сергеев И.Н., Панферов В.С. М.: Экзамен, 2012 - 304 с.

  5. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразоват. учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. 4-е изд., доп. – М.: Мнемозина, 2007.

  6. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений (профильный уровень) / [А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. 4-е изд., испр. – М.: Мнемозина, 2007.





Интернет-источники:

Открытый банк задач ЕГЭ:

 http://mathege.ru

http://alexlarin.net/ege/matem/main.html

http://www.fipi.ru/view/sections/226/docs/627.html



Он-лайн тесты:

http://uztest.ru/exam?idexam=25

          http://egeru.ru

http://reshuege.ru/

http://alexlarin.net/ege/matem/main.html

hello_html_3a4d4f9b.jpg



Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 20.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров251
Номер материала ДВ-273964
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх