Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Физика / Конспекты / Электрическое сопротивление белка и желтка куриного яйца.
  • Физика

Электрическое сопротивление белка и желтка куриного яйца.

библиотека
материалов

Конкурс работ на соискание премии

Главы Республики Северная Осетия–Алания в области науки и техники

для учащихся общеобразовательных учреждений







Тема: « Влияние ультрафиолетового излучения

на яичный белок».









Организация: МКОУ СОШ №2 г. Беслана.

Руководитель: преподаватель физики Тагаева Рита Исаевна

Автор: учащаяся 10 класса Гочиева Алана Сослановна












Беслан

2013

Содержание. Стр.

1.Введение . 4-7

2. Обзор современного состояния вопроса. 8-16

3. Обоснование актуальности. 17-18

4.Цели и задачи проекта. 19

5.Описание исследования. 20-23

6.Пути внедрения в практическую деятельность. 24

7. Результаты. 25

8. Предполагаемые конечные результаты, потенциалы 25

развития проекта, долгосрочный эффект.

9.Приложение (графики). 26-28

10. Список использованной литературы. 29
















3

I. Введение.

Проблема влияния ультрафиолетового излучения (УФИ) на живые организмы вызывает непреходящий интерес в связи с тем, что ультрафиолетовое излучение является естественным экологическим фактором, участвующим в эволюции всех жизненных форм на земле. Ультрафиолетовые лучи - это электромагнитные волны с длиной волны меньше, чем у фиолетового света. Ультрафиолетовые лучи невидимы, но действие их на сетчатку глаза и кожу велико и разрушительно. Ультрафиолетовое излучение солнца недостаточно поглощается верхними слоями атмосферы. Поэтому высоко в горах нельзя длительное время оставаться без темных очков и без одежды.

В малых дозах ультрафиолетовые лучи оказывают целебное действие. Умеренное пребывание на солнце полезно: ультрафиолет способствует росту и укреплению организма. Кроме прямого действия на кожу, ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций организма. Ультрафиолетовые лучи, наконец, обладают и бактерицидным действием. Они убивают болезнетворные бактерии и используются с этой целью в медицине. Ультрафиолетовое излучение солнца и искусственных источников по рекомендации II Международного конгресса по физиотерапии и фотобиологии (1932г) разделяется на три области: А-400-320 нм; В- 320-275 нм; С-275-180 нм. В действии каждого из этих диапазонов на живые организмы есть существенные различия. Наибольшая биологическая активность свойственна коротковолновому ультрафиолетовому излучению (С-диапазону). В солнечном излучении из-за эффективного поглощения озоном атмосферы коротковолновое ультрафиолетовое излучение не достигает поверхности Земли.

4

Другое дело при искусственной соляризации ртутно-кварцевыми лампами коротковолновая часть спектра неизменно присутствует, т.к. резонансная линия излучения паров ртути имеет длину волны 250 нм.

Жаркий летний день, яркое Солнце, безоблачное синее небо, берег реки. Вы лежите, подставив Солнцу свое тело. Проходят минуты блаженного полузабытья; ласкающие прикосновения солнечных лучей расслабляют мышцы, снимают ощущение усталости. Нагретые Солнцем участки кожи становятся розоватыми, горячими на ощупь. Это покраснение (калорическая эритема) появляется в результате нагрева кожи видимыми и инфракрасными лучами Солнца и прилива к ней крови. Оно исчезает почти сразу же после прекращения солнечной ванны. Однако через 2—8 ч снова появляется покраснение кожи вместе с ощущением жжения. Это уже ультрафиолетовая эритема, отличающаяся от калорической некоторыми особенностями. Появляется она после скрытого периода, в пределах облученного участка кожи и сменяется загаром и шелушением. Длительность такой эритемы — от 10—12 ч до 3—4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной. По существу эритема представляет собой воспалительную реакцию, ожог кожи. Но это воспаление особое — безмикробное, асептическое. Если доза лучей слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи (эпидермис), образует пузыри. В тяжелых случаях появляются участки омертвения, некроза эпидермиса.

Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих пигмент, загар бледнеет. Однако полностью он не исчезает через несколько недель и даже месяцев.

5

Кожный покров, или эпидермис человека, состоит из большого количества клеточных слоев и имеет толщину 0,5 мм (рис. 17). Его назначение — защищать организм от повреждений, колебаний температуры, давления, служить барьером на пути инфекции. Наиболее глубокий зародышевый слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В зародышевом слое идет непрерывный процесс размножения клеток; более старые оттесняются наружу молодыми клетками и отмирают. Пласты мертвых и умирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,3 мм, который все время слущивается снаружи и восстанавливается изнутри. Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они, естественно, не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче волна ультрафиолетовых лучей, тем меньше их проникающая способность. Лучи короче 3100 А не проникают глубже эпидермиса. Более длинноволновые лучи достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Значит, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе. Именно здесь начинается сложная цепь биохимических и физиологических сдвигов в организме, вызываемых ультрафиолетовой радиацией. Самые большие изменения происходят в зародышевом слое эпидермиса, где поглощается основное количество ультрафиолетовых лучей. Процессы фотолиза и денатурации биополимеров приводят к гибели шиповидных клеток зародышевого слоя. Активные продукты фотолиза белков

6

(гистамин, гистаминоподобные вещества, ацетилхолин и др.) вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы. Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается. От состояния нервной системы зависит степень выраженности эритемы, и даже возможность ее образования. Советские ученые (С. А. Бруштейн, А. Е. Щербак, А. Р. Киричинский, Г. С. Варшавер и др.) установили, что при ранениях, перерезках нервов, их воспалениях, при обморожениях эритема на соответствующих участках кожи либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Сон, наркоз, алкогольное опьянение, физическое и умственное утомление, заболевания угнетают образование эритемы. Поэтому эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза.

Первое научное описание эритемы дал в 1889 г. русский ученый А. Н. Маклаков, который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток конъюнктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение — катаракту.



7

Обзор современного состояния вопроса.

В 1899 г. датский ученый Н. Финзен впервые применил ультрафиолетовые лучи для лечения некоторых болезней. Позже были подробно изучены и другие проявления действия этих лучей на организм, особенности эффекта, вызываемого разными участками ультрафиолетового спектра. Оказывается, эритему можно вызвать лучами двух разных спектральных областей. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 2970 А. К лучам с меньшей и большей длиной волны эритемная чувствительность кожи снижается. С помощью искусственных источников излучения эритему удалось вызвать также лучами в 2500—2550 А. Лучи с длиной волны 2537 А дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах. Таким образом, кривая эритемной чувствительности кожи имеет двугорбый вид. Седловина между двумя максимумами не случайна — она образовалась за счет экранирующего, поглощающего действия рогового слоя кожи. Если удалить (осторожно срезать) отмершие слои ороговевших клеток, то лучи с длиной волны 2700—2800 А также вызывают в этом участке кожи покраснение, повышение температуры, легкую болезненность, отечность и другие признаки эритемы. Одно из средств защиты организма от перегревания — прилив крови к коже, расширение кожных сосудов. При этом увеличивается температура кожи и теплоотдача путем излучения

(в инфракрасной области спектра), а также путем конвекции.



8

Но если воздух и окружающие предметы сами имеют высокую температуру, вступает в действие еще один механизм отдачи тепла — испарение за счет потоотделения.

Все эти механизмы терморегуляции предназначены для защиты исключительно от видимых и инфракрасных лучей Солнца. Но большое количество ультрафиолета также опасно, и потому у человека одновременно с потоотделением включается и механизм защиты от ультрафиолетовых лучей. Пот, оказывается, содержит урокановую кислоту — вещество, хорошо поглощающее эти лучи благодаря наличию в его молекулах бензольного кольца.

В естественных условиях солнечного освещения вслед за эритемой развивается пигментация кожи, загар. Спектральный максимум пигментации (3400 А) не совпадает ни с одним из пиков эритемной чувствительности. Подбирая источник излучения, можно вызвать пигментацию без эритемы и наоборот. Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявления разных, связанных друг с другом процессов. Кожный пигмент меланин образуется в клетках самого нижнего слоя эпидермиса — меланобластах. Исходным материалом для образования меланина служат аминокислоты тирозин, диоксифенилаланин, а также продукты распада адреналина. Ультрафиолетовые лучи ускоряют образование и накопление меланина. Каков смысл загара, накопления меланина, если исходить из интересов организма? Он защищает клетки дермы, расположенные в ней сосуды и нервы от длинноволновых ультрафиолетовых, а также от видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар.

Для защиты от ультрафиолетовых лучей большое значение имеет утолщение рогового слоя эпидермиса.

9

Через один — три дня после образования эритемы в зародышевом слое эпидермиса начинается усиленное деление клеток. Эпидермис утолщается, количество слоев клеток увеличивается; через такой барьер ультрафиолетовым лучам проникнуть труднее. Если облучение повторяется, роговой слой продолжает утолщаться. Вот почему загоревшая кожа груба и шершава на ощупь. Природа использовала энергию ультрафиолетовых лучей для того, чтобы вызвать в организме защитную реакцию не только против этих лучей, но и против других лучей, входящих в состав солнечного спектра,— видимых и инфракрасных. Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, красная часть, проникают в ткани гораздо глубже, чем ультрафиолетовые лучи,— на глубину до 3—4 мм. Не пропустить эти лучи вглубь тела, защитить от перегрева нежные и привыкшие к постоянству температуры внутренние органы — вот одна из задач, с которыми великолепно справляется меланин. Гранулы темно-коричневого, почти черного пигмента поглощают в широкой области спектра. Меланин — основной пигмент тела человека. Он придает окраску не только загоревшей коже, но и волосам, ресницам, радужной оболочке глаз. Меланин содержится и в пигментном слое сетчатки глаза, участвует в восприятии света. Исходный продукт для образования меланина — аминокислота тирозин, которая под влиянием фермента тирозиназы окисляется в диоксифенилаланин. Присутствие фермента совершенно необходимо для образования меланина. Генетический дефект, сопровождающийся нарушением продукции тирозиназы, проявляется в отсутствие пигментации. Люди с таким дефектом имеют белые волосы, ресницы и розовые глаза (через радужную оболочку, лишенную пигмента, просвечивают кровеносные сосуды), носят название альбиносов.

10

Отсутствие меланина не слишком беспокоит их. Однако против солнечных лучей они беззащитны.

Пребывание под прямыми лучами Солнца означает для них ожоги, волдыри и даже некрозы. Но меланин — не просто пигмент, не пассивный защитный экран, отгораживающий ткани и внутренние органы от не в меру горячих лучей Солнца. Меланин — необыкновенное вещество, защитные функции которого в организме значительно шире и сложнее. Когда кванты ультрафиолетовых лучей поглощаются молекулами белков, нуклеиновых кислот и других органических соединений, один из вероятных результатов такой встречи — распад и расщепление молекул. Осколки разрушенных молекул, обладающие высокой биохимической активностью, носят название ионов, если они несут электрический заряд, и свободных радикалов, если они обладают неспаренным электроном, свободной валентностью. Свободные радикалы реагируют с молекулами белков и нуклеиновых кислот, дополняя и усиливая их непосредственное повреждение, порождают лавинообразно нарастающий процесс, подобный цепной реакции распада ядер урана, возбуждаемой потоком нейтронов. Остановить эту цепную реакцию — значит ослабить повреждающее действие излучения, предотвратить его опасные для здоровья последствия. И с этой задачей меланин справляется великолепно. Молекулы меланина, образующиеся в результате окислительной конденсации тирозина, диоксифенилаланина, пирокатехина — это огромные полимерные молекулы с сетчатой структурой. В процессе окисления предшественников меланина также образуются свободные радикалы, так называемые семихиноны.


11

Большинство из них, соединяясь, взаимно нейтрализуется, но часть сохраняет не спаренные электроны и в составе молекулы меланина.

На вооружении современной науки состоит метод электронного парамагнитного резонанса (ЭПР), позволяющий обнаруживать присутствие свободных радикалов. С помощью этого метода удалось показать, что гигантские сетчатые молекулы меланина обладают свойствами стабильных свободных радикалов. Более того, в звеньях этой сети легко «застревают», связываются, нейтрализуются другие свободные радикалы. Подобно чудесному защитному покрову, сетчатые молекулы меланина задерживают и обезвреживают активные, сильнодействующие осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь, во внутренние среды организма. И эта защитная функция меланина не менее важна, чем поглощение тепловых лучей. Статистика бесстрастно утверждает, что рак кожи у лиц с сильно пигментированной кожей при равных условиях освещения Солнцем развивается примерно в 10 раз реже, чем у белых. Заслуга меланина здесь несомненна. В природе существуют излучения, гораздо более высокоэнергетичные и сильнодействующие, чем ультрафиолетовое,— это рентгеновские и гамма-лучи. При их взаимодействии с живыми тканями свободные радикалы и ионы образуются значительно чаще и в больших количествах, чем при освещении кожи Солнцем. К тому же гамма-лучи проникают в тело человека на всю его глубину, и процесс расщепления молекул не ограничивается только кожей. Опасность повреждения органов и тканей свободными радикалами в этом случае неизмеримо больше, чем при освещении ультрафиолетом. Меланин кожи в этих условиях не может полностью выполнить свою защитную роль, так как не в силах задержать глубоко проникающее излучение.

12

Но если большие молекулы меланина перевести в растворимое состояние (обработав его слабой щелочью) и затем ввести в кровь, разрушительное действие ядерных излучений будет ослаблено. Так защитные свойства меланина находят и новые, столь же важные и полезные применения.

Электрическое сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; его можно рассчитать по формуле R=U/I

Где R — сопротивление, U — разность электрических потенциалов (напряжение) на концах проводника, I — сила тока, протекающего между концами проводника под действием разности потенциалов.



Единицы и размерности.

Размерность электрического сопротивления в СИ: В международной системе единиц (СИ) единицей сопротивления является Ом .



13

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях. Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит. Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле: R=U/I

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

14

Удельное сопротивление металлического проводника зависит от концентрации свободных электронов в проводнике;

интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;

интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры. Удельное сопротивление определяется по формуле p= RS/L.

Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — "нихрома". Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза. Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт.

Сопротивление человека.

Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм. Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейно по отношению к

15

приложенному напряжению, во-вторых, меняется во времени, в - третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет

и т. д.

Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц.













16

hello_html_66181e4b.pngОбоснование актуальности.

Строение яйца птиц соответствует его назначению — оно содержит всё необходимое для развития нового организма. Питание зародыша обеспечивает желток. Существует два типа желтка — белый и жёлтый, они находятся в яйце чередующимися концентрическими слоями. Желток заключён в вителлиновую мембрану и окружён белком. Содержимое яйца окружено двумя подскорлупковыми оболочками, внутренней и наружной. Снаружи находится скорлупа, состоящая главным образом из карбоната кальция. После откладки яйца на его тупом конце постепенно образуется воздушная камера. Древние римляне употребляли выражение (пословицу) от яйца до яблока или “Ab-ovo eque ad mala”, что было основано на том, что обед у римлян должен начитаться с яйца и кончаться яблоком. Со временем о фруктах постепенно забыли, и осталось только «яйцо». Это как бы притча-пословица, на самом деле с яйца начинается всякая жизнь. Актуальностью темы является обеспечение населения диетическими продуктами питания: мясом и яйцами птиц - центральная проблема как в

хозяйственном, так и в политическом плане.

Ультрафиолетовое излучение применяется для санитарной обработки яиц, то есть при санации продукции птицефабрик ультрафиолетом.




17

Эволюционно природа хорошо потрудилась над формированием яйца. Сама форма яйца и сегодня вызывает восхищение , даже хрупкая скорлупа обтекаемости меньше подвергается разрушению при давлении за счет особой формы. Например, наседка (курица или птица) постоянно перекатывает под собой яйца, редко их давит. В природе характерная обтекаемая форма не дает яйцам выпадать из гнезда. В литературе можно найти утверждение исследователей о том, что яйцо может выдержать давление вдоль продольной оси до 10 кг и в пять раз меньше давление в поперечном направлении.

Древние наши предки поклонялись яйцу. Еще в дохристианскую эпоху язычники, красочно отмечая приход весны, готовили к тому празднику писанки - разрисованные яйца. Эта традиция, раскрашивания яиц на праздник православия – Пасхи, сохранились во многих славянских народов. Техника разрисовки яиц различная. Однако, чаще всего расписание яиц происходит с применением воска.

Форма яйца птицы является загадкой природы, и сегодня во многих случаях используется человеком в быту. Например, форма яйца используется для создания емкостей для хранения в ней различных жидкостей, в том числе и питьевой воды. В.Дакаре (Сенегал) появился театр в яйцевидной форме. В архитектуре театра не было внутренних опор и помещение держится только на своем фундаменте. В нами впервые было предложено использовать куриное яйцо в качестве условного стандарта (эталона) биоэнергетики живого, измеряемого в единицах – вернад.







18

Цель нашей работы заключается в следующем: рассмотреть влияние ультрафиолетового излучения на сопротивление яичного белка.

Для решения данного вопроса проводилось измерение вольтамперной характеристики облучённых и необлучённых образцов однодневного яичного белка.

Для достижения цели были поставлены следующие задачи:

1. Определить сопротивление яичного белка, так как жизнеспособность тканей определяется сопротивлением. 2. Определить сколько времени белок остается жизнеспособным под влиянием ультрафиолетового излучения.

3. Пронаблюдать изменений относительного сопротивления белка от времени вылежки.

4.По возможности выделить наиболее чувствительную часть белка, то есть, на какой тип аминокислот сильнее влияет ультрафиолетовое излучение. В данной работе приведены результаты экспериментального воздействия ультрафиолетового излучения на электрическое сопротивление яичного белка.













19

Описание исследования.

Для проведения нашего эксперимента изготавливались образцы из однодневного яичного белка, состоящего в основном из яичного альбумина-67%. Облучение ультрафиолетовыми лучами проводилось с помощью ртутно-кварцевой лампы «ДРТ-400» в специальных кварцевых кюветах. Время облучения было различно и варьировалось от 10-бОсек (малые времена облучения) и от 20 до 10 минут - большие времена облучения. Далее методом вольтамперных характеристик измерялось электрическое сопротивление на характериографе типа 1575(ТК4805) через определенные промежутки времени: от 50 до 60 минут, и так до 22 суток. Одновременно проводилось измерение контрольных образцов, не подвергавшихся ультрафиолетовому излучению. На одной из серий контрольных образцов измерялась температурная зависимость сопротивления в интервале от 0 до 60 °С.

На рис.1 представлены кинетические кривые удельного сопротивления для малых и больших времен облучения. Как показано, чем больше время облучения, тем быстрее происходит спад или уменьшение сопротивления. Причем, если время облучения меньше трех минут, то даже через четверо суток возможно восстановление сопротивления белка до прежнего значения. При большем времени облучения такого не происходит.

Опыт№1 .

Цель: Установить зависимость удельного сопротивления от времени вылежки для различной дозы ультрафиолетового облучения. Для определения удельного сопротивления изготавливались образцы длиной 1см и площадью медных контактов 25мм2. Удельное сопротивление определяли по формуле: p= RS/L, где R=U/I.

20

Для опыта взяли яичный белок и его набрали в медицинский шприц, снабжённый медными контактами – электродами. Через электроды подключили шприц с яичным белком к физическому прибору (характериографу). Характериограф - Z типа1575 (TR-4805) представляет прибор общего назначения, служащий для исследования характеристик полупроводниковых приборов. Характериограф позволяет измерять ток и напряжение в широком диапазоне от 1 мкм до 10 А и от 0,1 В до 1000В соответственно.

hello_html_44986642.jpg

По истечении 2-3 мин после включения прибор является работоспособным, но в случае более чувствительных или точных измерений целесообразно выждать время разогрева (30 мин).

21

Далее по углу наклона определяем значение сопротивления белка. зависимости I=f(u), т.е. вольтамперной характеристики определим значение сопротивление яичного белка. По формуле p= RS/L определили удельное сопротивление яичного белка, где S - площадь поверхности яичного белка, то есть площадь металлических пластин, прикреплённых к медицинскому шприцу с яичным белком.

L-длина яичного белка, то есть длина шприца. Площадь белка-

2,5х 10-5м2, длина - 0,01м.

На основании результатов проведённых измерений сделали вывод.

Вывод: чем больше время облучения, тем быстрее происходит спад или уменьшение сопротивления.

Опыт №2.

Цель: пронаблюдать изменения относительного сопротивления белка от времени вылежки.

p - удельное сопротивление облученных образцов.

p о - удельное сопротивления необлученных образцов.

Pо / р - относительное сопротивление, т.е. изменение сопротивления облученных образцов, отнесенных к сопротивлению необлученных образцов при одних и тех же временных выдержках.

На рис.2 показаны результаты изменения относительного сопротивления белка от времени вылежки.

Особое внимание следует обратить на поведение образцов подвергавшихся облучению в течение двух минут. При уменьшении сопротивления в первые трое суток, в интервале от трех до семи суток происходит некоторая стабилизация - сопротивления образца даже


22

несколько увеличилась, затем наблюдалось резкое повторное падение сопротивления, сменившееся после непродолжительного периода

стабилизации резким повышением сопротивления почти до первоначального его значения. Подчеркнем, что сопротивление является структурно- чувствительным параметром среды, и, его уменьшение связано с процессами денатурации белка, обусловленное фотоактивацией белка.

Вывод: можно предположить, что кратковременно до двух минут облучённый белок ещё способен на денатурацию. Большое время облучения приводит к необратимым изменениям сопротивления.



















23

Пути внедрения в практическую деятельность.

В результате проведённой работы было установлено следующее:

1.Удельное сопротивление зависит от дозы ультрафиолетового излучения.

2.Относительное сопротивление белка зависит от времени вылежки.

3.Чем больше время облучения, тем менее жизнеспособным становится белок. Причем, если время облучения меньше трёх минут, то даже

через четверо суток возможно восстановление сопротивления белка до прежнего значения. При больших временах облучения такого не происходит. Электрическое сопротивление является структурно-чувствительным параметром среды, и его уменьшение связано с процессами денатурации белка, сопровождающимся на наш взгляд, распадом четвертичной и третичной структуры белка за счёт разрыва самых слабых (возможно водородных) связей. При кратковременном облучении ультрафиолетовыми лучами такие связи могут восстанавливаться. Под влиянием большой дозы облучения происходит значительное разрушение белковых структур. Полученные результаты показывают необходимость осторожного подхода по всем видам соляризации, особенно для детей младшего возраста.

Можно предположить, что ультрафиолет вызывает старение белковых структур, аналогично тому, как это происходит при естественной вылежке яиц при комнатной температуре. Разница только в том, что в облучённых образцах старение происходит гораздо быстрее.

Таким образом, наряду с положительным влиянием ультрафиолетового излучения нельзя забывать и о его негативном действии - ускоренным процессом старения живых организмов.


24

Результаты.

      1. УФ излучение влияет на сопротивление яичного белка.

      2. По изменению сопротивления можно установить жизнеспособность живой клетки (яичного белка). .

      3. Существует критическое время облучения ультрафиолетом, превышение которого приводит к гибели белка.

      4. Ультрафиолетовое излучение несет в себе положительные и отрицательные качества. В больших дозах приносит вред.

      5. Нужен осторожный подход ко всем видам соляризации, особенно для детей младшего возраста.

      6. Ультрафиолетовое излучение сильнее влияет на триптофан (аминокислота).

Предполагаемые конечные результаты, потенциалы развития проекта, долгосрочный эффект.

Результаты исследования могут, использованы при санации продукции птицефабрик ультрафиолетом.

Полученные результаты могут быть использованы для дальнейшего исследования влияния ультрафиолета на отдельные аминокислотные составляющие белка.

Дополнительную информацию предполагаю получить с помощью исследования инфракрасной спектроскопии ( ИК спектры) белковых структур.







25


Список использованной литературы.

    1. Г.С. Ландсберг «Элементарный учебник физики».

Закон Ома для участка цепи. Сопротивление. Стр.110-114

    1. И.В. Черныш, энциклопедия «Хочу все знать».

УФ излучение. Стр.71

    1. Соросовский Научный журнал.

Молекулярная эволюция. Стр.53-57

    1. Прибор «Характериограф» (инструкция).

Принцип работы и устройство характеригрофа. Стр.3-5













29

Приложение.



hello_html_m5150d18a.gif

26



C:\Users\User\AppData\Local\Temp\FineReader10\media\image1.jpeg













27













2hello_html_3de45fdc.gif

Краткое описание документа:

Конкурс молодых исследователей.                                Конкурс работ на соискание премии

     Главы Республики Северная Осетия–Алания в области науки и техники

     для учащихся общеобразовательных учреждений

 

 

 

  Тема: «  Влияние ультрафиолетового излучения

                           на яичный белок».

 

 

                       

 

 

 

 

 Организация:   МКОУ СОШ №2 г. Беслана.

 Руководитель:  преподаватель физики  Тагаева Рита Исаевна

 Автор: учащаяся 10 класса  Гочиева Алана Сослановна

 

 

 

 

 

 

                                                   Беслан

                                                    2013

                                            Содержание.                                               Стр.

1.Введение .                                                                                              4-7

2. Обзор современного состояния вопроса.                                          8-16

3. Обоснование актуальности.                                                               17-18

4.Цели и задачи проекта.                                                                        19

5.Описание исследования.                                                                      20-23

6.Пути внедрения в практическую деятельность.                                24

7. Результаты.                                                                                           25

8. Предполагаемые конечные результаты, потенциалы                       25

развития проекта, долгосрочный эффект.

9.Приложение (графики).                                                                               26-28

10. Список использованной литературы.                                                   29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   

 

                                                      3


  I. Введение.

Проблема влияния ультрафиолетового излучения (УФИ) на живые организмы вызывает непреходящий интерес в связи с тем, что ультрафиолетовое излучение является естественным экологическим фактором, участвующим в эволюции всех жизненных форм на земле. Ультрафиолетовые лучи - это электромагнитные  волны с длиной волны меньше, чем у фиолетового света. Ультрафиолетовые лучи невидимы, но действие их на сетчатку глаза и кожу велико и разрушительно. Ультрафиолетовое излучение солнца недостаточно поглощается верхними слоями атмосферы. Поэтому высоко в горах нельзя длительное время оставаться без темных очков и без одежды.

В малых дозах ультрафиолетовые лучи оказывают целебное действие. Умеренное пребывание на солнце полезно: ультрафиолет способствует росту и укреплению организма. Кроме прямого действия на кожу, ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций организма. Ультрафиолетовые лучи, наконец, обладают и бактерицидным действием. Они убивают болезнетворные бактерии и используются с этой целью в медицине. Ультрафиолетовое излучение солнца и искусственных источников по рекомендации II Международного конгресса по физиотерапии и фотобиологии (1932г) разделяется на три области: А-400-320 нм; В- 320-275 нм; С-275-180 нм. В действии каждого из этих диапазонов на живые организмы есть существенные различия. Наибольшая биологическая активность свойственна коротковолновому ультрафиолетовому излучению (С-диапазону). В солнечном излучении из-за эффективного поглощения озоном атмосферы коротковолновое ультрафиолетовое излучение не достигает поверхности Земли.

                                    

                                      4

Другое дело при искусственной соляризации ртутно-кварцевыми лампами коротковолновая часть спектра неизменно присутствует, т.к. резонансная линия излучения паров ртути имеет длину волны 250 нм.

Жаркий летний день, яркое Солнце, безоблачное синее небо, берег реки. Вы лежите, подставив Солнцу свое тело. Проходят минуты блаженного полузабытья; ласкающие прикосновения солнечных лучей расслабляют мышцы, снимают ощущение усталости. Нагретые Солнцем участки кожи становятся розоватыми, горячими на ощупь. Это покраснение (калорическая эритема) появляется в результате нагрева кожи видимыми и инфракрасными лучами Солнца и прилива к ней крови. Оно исчезает почти сразу же после прекращения солнечной ванны. Однако через 2—8 ч снова появляется покраснение кожи вместе с ощущением жжения. Это уже ультрафиолетовая эритема, отличающаяся от калорической некоторыми особенностями. Появляется она после скрытого периода, в пределах облученного участка кожи и сменяется загаром и шелушением. Длительность такой эритемы — от 10—12 ч до 3—4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной. По существу эритема представляет собой воспалительную реакцию, ожог кожи. Но это воспаление особое — безмикробное, асептическое. Если доза лучей слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи (эпидермис), образует пузыри. В тяжелых случаях появляются участки омертвения, некроза эпидермиса.

  Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих пигмент, загар бледнеет. Однако полностью он не исчезает через несколько недель и даже месяцев.

                                                5

Кожный покров, или эпидермис человека, состоит из большого количества клеточных слоев и имеет толщину 0,5 мм (рис. 17). Его назначение — защищать организм от повреждений, колебаний температуры, давления, служить барьером на пути инфекции. Наиболее глубокий зародышевый слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В зародышевом слое идет непрерывный процесс размножения клеток; более старые оттесняются наружу молодыми клетками и отмирают. Пласты мертвых и умирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,3 мм, который все время слущивается снаружи и восстанавливается изнутри. Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они, естественно, не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче волна ультрафиолетовых лучей, тем меньше их проникающая способность. Лучи короче 3100 А не проникают глубже эпидермиса. Более длинноволновые лучи достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Значит, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе. Именно здесь начинается сложная цепь биохимических и физиологических сдвигов в организме, вызываемых ультрафиолетовой радиацией. Самые большие изменения происходят в зародышевом слое эпидермиса, где поглощается основное количество ультрафиолетовых лучей. Процессы фотолиза и денатурации биополимеров приводят к гибели шиповидных клеток зародышевого слоя. Активные продукты фотолиза белков

                                                    6

(гистамин, гистаминоподобные вещества, ацетилхолин и др.) вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы. Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается. От состояния нервной системы зависит степень выраженности эритемы, и даже возможность ее образования. Советские ученые (С. А. Бруштейн, А. Е. Щербак, А. Р. Киричинский, Г. С. Варшавер и др.) установили, что при ранениях, перерезках нервов, их воспалениях, при обморожениях эритема на соответствующих участках кожи либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Сон, наркоз, алкогольное опьянение, физическое и умственное утомление, заболевания угнетают образование эритемы. Поэтому эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза.

Первое научное описание эритемы дал в 1889 г. русский ученый А. Н. Маклаков, который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток конъюнктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение — катаракту.        

 

                                        

 

                                    7           

                  Обзор современного состояния вопроса.

В 1899 г. датский ученый Н. Финзен впервые применил ультрафиолетовые лучи для лечения некоторых болезней. Позже были подробно изучены и другие проявления действия этих лучей на организм, особенности эффекта, вызываемого разными участками ультрафиолетового спектра. Оказывается, эритему можно вызвать лучами двух разных спектральных областей. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 2970 А. К лучам с меньшей и большей длиной волны эритемная чувствительность кожи снижается. С помощью искусственных источников излучения  эритему удалось вызвать также лучами в 2500—2550 А. Лучи с длиной волны 2537 А дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах. Таким образом, кривая эритемной чувствительности кожи имеет двугорбый вид. Седловина между двумя максимумами не случайна — она образовалась за счет экранирующего, поглощающего действия рогового слоя кожи. Если удалить (осторожно срезать) отмершие слои ороговевших клеток, то лучи с длиной волны 2700—2800 А также вызывают в этом участке кожи покраснение, повышение температуры, легкую болезненность, отечность и другие признаки эритемы. Одно из средств защиты организма от перегревания — прилив крови к коже, расширение кожных сосудов. При этом увеличивается температура кожи и теплоотдача путем излучения

 (в инфракрасной области спектра), а также путем конвекции.

                                                  

                                                       

 

                                                           

 

                                                              8

Но если воздух и окружающие предметы сами имеют высокую температуру, вступает в действие еще один механизм отдачи тепла — испарение за счет потоотделения.

Все эти механизмы терморегуляции предназначены для защиты исключительно от видимых и инфракрасных лучей Солнца. Но большое количество ультрафиолета также опасно, и потому у человека одновременно с потоотделением включается и механизм защиты от ультрафиолетовых лучей. Пот, оказывается, содержит урокановую кислоту — вещество, хорошо поглощающее эти лучи благодаря наличию в его молекулах бензольного кольца.

В естественных условиях солнечного освещения вслед за эритемой развивается пигментация кожи, загар. Спектральный максимум пигментации (3400 А) не совпадает ни с одним из пиков эритемной чувствительности. Подбирая источник излучения, можно вызвать пигментацию без эритемы и наоборот. Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявления разных, связанных друг с другом процессов. Кожный пигмент меланин образуется в клетках самого нижнего слоя эпидермиса — меланобластах. Исходным материалом для образования меланина служат аминокислоты тирозин, диоксифенилаланин, а также продукты распада адреналина. Ультрафиолетовые лучи ускоряют образование и накопление меланина. Каков смысл загара, накопления меланина, если исходить из интересов организма? Он защищает клетки дермы, расположенные в ней сосуды и нервы от длинноволновых ультрафиолетовых, а также от видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар.

  Для защиты от ультрафиолетовых лучей большое значение имеет утолщение рогового слоя эпидермиса.

                                                        

                                                            9

Через один — три дня после образования эритемы в зародышевом слое эпидермиса начинается усиленное деление клеток. Эпидермис утолщается, количество слоев клеток увеличивается; через такой барьер ультрафиолетовым лучам проникнуть труднее. Если облучение повторяется, роговой слой продолжает утолщаться. Вот почему загоревшая кожа груба и шершава на ощупь. Природа использовала энергию ультрафиолетовых лучей для того, чтобы вызвать в организме защитную реакцию не только против этих лучей, но и против других лучей, входящих в состав солнечного спектра,— видимых и инфракрасных. Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, красная часть, проникают в ткани гораздо глубже, чем ультрафиолетовые лучи,— на глубину до 3—4 мм. Не пропустить эти лучи вглубь тела, защитить от перегрева нежные и привыкшие к постоянству температуры внутренние органы — вот одна из задач, с которыми великолепно справляется меланин. Гранулы темно-коричневого, почти черного пигмента поглощают в широкой области спектра. Меланин — основной пигмент тела человека. Он придает окраску не только загоревшей коже, но и волосам, ресницам, радужной оболочке глаз. Меланин содержится и в пигментном слое сетчатки глаза, участвует в восприятии света. Исходный продукт для образования меланина — аминокислота тирозин, которая под влиянием фермента тирозиназы окисляется в диоксифенилаланин. Присутствие фермента совершенно необходимо для образования меланина. Генетический дефект, сопровождающийся нарушением продукции тирозиназы, проявляется в отсутствие пигментации. Люди с таким дефектом имеют белые волосы, ресницы и розовые глаза (через радужную оболочку, лишенную пигмента, просвечивают кровеносные сосуды), носят название альбиносов.

                                                

                                                   10

 Отсутствие меланина не слишком беспокоит их. Однако против солнечных лучей они беззащитны.

Пребывание под прямыми лучами Солнца означает для них ожоги, волдыри и даже некрозы. Но меланин — не просто пигмент, не пассивный защитный экран, отгораживающий ткани и внутренние органы от не в меру горячих лучей Солнца. Меланин — необыкновенное вещество, защитные функции которого в организме значительно шире и сложнее. Когда кванты ультрафиолетовых лучей поглощаются молекулами белков, нуклеиновых кислот и других органических соединений, один из вероятных результатов такой встречи — распад и расщепление молекул. Осколки разрушенных молекул, обладающие высокой биохимической активностью, носят название ионов, если они несут электрический заряд, и свободных радикалов, если они обладают неспаренным электроном, свободной валентностью. Свободные радикалы реагируют с молекулами белков и нуклеиновых кислот, дополняя и усиливая их непосредственное повреждение, порождают лавинообразно нарастающий процесс, подобный цепной реакции распада ядер урана, возбуждаемой потоком нейтронов. Остановить эту цепную реакцию — значит ослабить повреждающее действие излучения, предотвратить его опасные для здоровья последствия. И с этой задачей меланин справляется великолепно. Молекулы меланина, образующиеся в результате окислительной конденсации тирозина, диоксифенилаланина, пирокатехина — это огромные полимерные молекулы с сетчатой структурой. В процессе окисления предшественников меланина также образуются свободные радикалы, так называемые семихиноны.

                                                          

 

                                                     

                                                  11

Большинство из них, соединяясь, взаимно нейтрализуется, но часть сохраняет не спаренные электроны и в составе молекулы меланина.

На вооружении современной науки состоит метод электронного парамагнитного резонанса (ЭПР), позволяющий обнаруживать присутствие свободных радикалов. С помощью этого метода удалось показать, что гигантские сетчатые молекулы меланина обладают свойствами стабильных свободных радикалов. Более того, в звеньях этой сети легко «застревают», связываются, нейтрализуются другие свободные радикалы. Подобно чудесному защитному покрову, сетчатые молекулы меланина задерживают и обезвреживают активные, сильнодействующие осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь, во внутренние среды организма. И эта защитная функция меланина не менее важна, чем поглощение тепловых лучей. Статистика бесстрастно утверждает, что рак кожи у лиц с сильно пигментированной кожей при равных условиях освещения Солнцем развивается примерно в 10 раз реже, чем у белых. Заслуга меланина здесь несомненна. В природе существуют излучения, гораздо более высокоэнергетичные и сильнодействующие, чем ультрафиолетовое,— это рентгеновские и гамма-лучи. При их взаимодействии с живыми тканями свободные радикалы и ионы образуются значительно чаще и в больших количествах, чем при освещении кожи Солнцем. К тому же гамма-лучи проникают в тело человека на всю его глубину, и процесс расщепления молекул не ограничивается только кожей. Опасность повреждения органов и тканей свободными радикалами в этом случае неизмеримо больше, чем при освещении ультрафиолетом. Меланин кожи в этих условиях не может полностью выполнить свою защитную роль, так как не в силах задержать глубоко проникающее излучение.

                                                  

                                                         12

Но если большие молекулы меланина перевести в растворимое состояние (обработав его слабой щелочью) и затем ввести в кровь, разрушительное действие ядерных излучений будет ослаблено. Так защитные свойства меланина находят и новые, столь же важные и полезные применения.

Электрическое сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; его  можно рассчитать по формуле  R=U/I

Где  R — сопротивление, U — разность электрических потенциалов (напряжение) на концах проводника, I — сила тока, протекающего между концами проводника под действием разности потенциалов.

 

 

Единицы и размерности.

Размерность электрического сопротивления в СИ:  В международной системе единиц (СИ) единицей сопротивления является Ом .

 

                                                              

                                                               13

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому.Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под  действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зави

Автор
Дата добавления 31.01.2015
Раздел Физика
Подраздел Конспекты
Просмотров390
Номер материала 353865
Получить свидетельство о публикации

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх