928546
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаРабочие программыФакультатив сабақ: Функцияның қасиеттерін пайдаланып теңдеулер мен теңсіздіктерді шешу

Факультатив сабақ: Функцияның қасиеттерін пайдаланып теңдеулер мен теңсіздіктерді шешу

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Сабақтың тақырыбы:

Функцияның қасиеттерін пайдаланып теңдеулер мен теңсіздіктерді шешу.

Сабақтың мақсаты: . Функцияның қасиеттеріне сүйене отырып теңдеулер мен теңсіздіктерді шешудің қалыптан тыс әдістерін көрсету.

. Бұрынғы алған білім  білік дағдыларын пайдалана отырып, қалыптан тыс теңдеулер мен теңсіздіктерді шешу дағдысын қалыптастыру.

. Математика пәніне қызығушылығын ояту, математикалық танымды кеңейту.

Сабақтың көрнекілігі: интербелсенді тақта, үлестірмелі материалдар, кесте

Сабақтың түрі: Тақырып бойынша қорытындылау сабағы.

. Ұйымдастыру кезеңі.

Функцияның қасиеттеріне сүйене отырып, теңдеулер мен теңсіздіктерді шешудің қалыптан тыс әдістерімен танысасыздар. Жалпы функция ұғымы көптеген ғасырлар бойы біртіндеп қалыптасқан. Әр түрлі ғылымдар функцияны әр түрлі анықтаған, кейбірі аналитикалық түрде, формуламен өрнектесе, ал біреулері еркін сызылған қисық ретінде анықтаған. Функцияға алғашқылардың бірі болып Лобочевский мен Дирихле анықтама берген.

Анықтама: Егер х айнымалысының әрбір мәніне, у айнымалысының тек бір ғана мәні сәйкес қойылса, онда у айнымалысын х аргументіне тәуелді функция деп атайды.

Есептерді шығарғанда келесі қасиеттерді қолданамыз:

Квадраттық үшмүшеден толық квадратты белгілеу

Косинус функциясының шектеулік қасиеті:   cos  

Синус функциясының шектеулік қасиеті:   sin

Квадраттық функцияның шектеулік қасиеті: (х  m) k k

Жеке тригонометриялық теңдеулерді шешу формулалары

Теңдеулерді шешудің теру әдісі

Кемімелі функцияның қасиеті: у hello_html_7c607252.gif

Өспелі функцияның қасиеті: у  hello_html_5f34b418.gif

Монотонды функция туралы теорема: у = hello_html_5e2a9abc.gifD(f)  f(x)  

Қарапайым теңдеулер түбірлерінің арасынан тригонометриялық шеңберде теңдеу түбірлерін таңдау.

 есеп. Теңдеуді шешіңдер: cos2x x2 – 8x + 17

Шешімі: cos2x = x2 – 8x + 17  cos 2x = (x – 4)2 + 1

Теңдеудің оң жақ және сол жағын бағалайық:



cos 2x = 1

(x – 4 )2 + 1 = 1 теңдігі орындалады. Жүйенің екінші теңдеуін шығарғанда х   болады.

Бұл мәнді бірінші теңдеуге қойып, теңдіктің орындалатынына көз жеткіземіз. Яғни, х   алғашқы теңдеудің түбірі болып табылады.

Жауабы: х  

  есеп.

( x – 3)2 + 5 = cos x . Жауабы: функция мәндері жиынының ортақ элементтері жоқ,сондықтан теңдеудің шешімі жоқ.

  есеп. Теңдеуді шешіңдер: hello_html_m71e11d8e.gif + hello_html_m7f41146a.gif = x2 – 1

Шешімі: Теңдеудің анықталу облысын қарастырайық:

hello_html_m40162102.gifx = 1

Сонда анықталу облысы бір саннан тұрады. Яғни, х   алғашқы теңдеудің түбірі болатындығын тексерейік. х   hello_html_bf11ac3.gif + hello_html_bf11ac3.gif = 1 – 1 = 0 0 Жауабы: х  .

  есеп. Теңдеуді шешіңдер:hello_html_m4fbcfda2.gif = x – 1

Шешімі: х    теңдеудің түбірі екенінін орнына қою әдісімен табамыз. Басқа түбірі болмайтындығына көз жеткіземіз. Себебі теңдеудің сол жағы кемитін функция, ал оң жағы өспелі функция. Жауабы: х hello_html_11852162.gif .

  есеп. Теңдеуді шешіңдер: sinhello_html_m418f76f4.gifcos2x = 1

Шешімі:   sin hello_html_m418f76f4.gif 1 және   cos2x 1 болғандықтан,

sinhello_html_m418f76f4.gifcos2x көбейтіндісін екі жүйенің біреуі орындалғанда ғана  ге тең болады.

hello_html_ma9854c2.gifнемесе hello_html_141e12b6.gif

Бірінші жүйені шешейік: х    n, n Z, x = n, nhello_html_11852162.gifZ x =   4n, n Z.

Екінші жүйені шешейік: x = 4n, n Z, x = 2+ n, nZ x

Жауабы: х    n, n Z.

  есеп. Теңдеуді шешіңдер: hello_html_m6695b7c7.gif = hello_html_mfe8f422.gif + tgt

Шешімі: hello_html_1a07cc36.gif 0 hello_html_11852162.gif hello_html_5aad5018.gif

hello_html_1a07cc36.gif0

sint = 0 теңдеудің түбірлері берілген теңдеудің түбірі бола ма соны тексереміз:

hello_html_4d14dda4.gifhello_html_11852162.gif= hello_html_7bd77855.gif + 0 0 = 0 бұдан sint =0 теңдеудің түбірлері берілген теңдеудің

түбірлері болатыны шығады.

sint = 0 теңдеуін шешеміз: t = k , k Z. Жауабы: t = k, kZ.

7 – есеп. Теңдеуді шешіңдер: hello_html_m593ecf8f.gif hello_html_md34fbe1.gif = 2



Шешімі: ММЖ: hello_html_m7a5cb76c.gif hello_html_5d427a84.gif x  hello_html_28a473a4.gif

у  hello_html_m593ecf8f.gif функциясы өзінің анықталу облысында үзіліссіз және монотонды кемиді, ал

у = 2 + hello_html_md34fbe1.gif функциясы анықталу облысында үзіліссіз және монотонды өспелі. Олай болса берілген теңдеудің бір ғана шешімі болады.

Тексереміз: х  , hello_html_474fc681.gif hello_html_m59e0595a.gif = 2 , 2=2 тура теңдік шықты, яғни х  .

Жауабы: х .



Сабақты қорытындылау.

Үйге тапсырма: х  х    cos4x теңдеуін шешу.



Общая информация

Номер материала: ДВ-466286

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.