Инфоурок / Математика / Другие методич. материалы / Факультативное занятие в 11 классе. Решение задач с параметрами

Факультативное занятие в 11 классе. Решение задач с параметрами

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов


Факультативное занятие

в 11 классе.









Тема «Решение задач с параметрами»







Учитель математики

СОШ №1

Вакажева А. Х.













а. Кошехабль




Решение задач с параметрами.


План факультативного занятия.

Тема. Задачи с параметрами.

Ход занятия.


  1. Объяснение материала.


Можно начать с рассмотрения следующих примеров:

  • прямая пропорциональность: у = kх (х и у переменные, k ­– параметр, khello_html_m4998f4b3.gif;

  • линейная функция: у = kх + b (x и y – переменные, k и b –параметры);

  • уравнение первой степени: ах + b + c = 0 (х – переменная, a, b,c–параметры, аhello_html_m4998f4b3.gif);

  • квадратное уравнение ax2 + bx + c = 0 (x – переменная,a,b и c – параметры, ahello_html_m4998f4b3.gif.


В школьном курсе рассматриваются такие задачи как поиск решений линейных и квадратных уравнений в общем виде, исследование количества их корней в зависимости от значений параметров.

При решении задач с параметрами необходимо усвоить следующее: параметр будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во–первых, предполагаемая известность позволяет «общаться» с параметром как с числом; во–вторых, степень свободы общения ограничивается его неизвестностью.

Основное, что нужно усвоить при первом знакомстве с параметром, – это необходимость осторожного обращения с фиксированным, но неизвестным числом.


Рассмотрим примеры

  1. Сравнить : –а и 3а

Решение.

Если а < 0, то –а > 3а;

Если а=0, то –а=3а;

Если а>0, то –а<3а;


2.Решить уравнение ах = 1.

Решение.

На первый взгляд кажется возможным сразу дать ответ х = hello_html_m267948da.gif. Однако при а = 0 данное уравнение решений не имеет, и верный ответ выглядит так:

Если а = 0, то нет решений;

Если аhello_html_m88d8014.gif0, то х =hello_html_m267948da.gif.


3.Решить уравнение (а2 – 1)х = а + 1.

Решение.

При решении этого уравнения достаточно рассмотреть такие случаи:

а) а = 1; тогда уравнение принимает вид 0х = 2 и не имеет решений;

б) а = –1; получаем 0х = 0, и очевидно х – любое;

в) аhello_html_m88d8014.gifhello_html_478e24e9.gif1; имеем х = hello_html_3771034a.gif.


5.Решить неравенство hello_html_med26fab.gif.

Решение.

Ясно, что при а hello_html_m88d8014.gif0 правая часть неравенства отрицательна, и тогда при любом х левая часть больше правой. В случае, когда а = 0, важно не упустить, что исходному неравенству удовлетворяют все действительные числа, кроме х = 3.

Ответ. Если аhello_html_m88d8014.gif0, то х –любое; если а = 0, то х<–3 или х>3.

II. Решить самостоятельно уравнение(с последующим разбором)

а) hello_html_mc18dc12.gif.

Решение.

Это уравнение равносильно системе:hello_html_29b46207.gif

При аhello_html_m4998f4b3.gif второе уравнение системы, а значит, и сама система, имеет единственное решение х -= 1. Если же а = 0, то из второго уравнения получаем х – любое. Следовательно, в это случае система имеет два решения х = 1 или х = –1.

Ответ. Если аhello_html_m88d8014.gif0, то х = 1; если а = 0, то х = hello_html_m26532730.gif


б) Решить уравнение hello_html_6fb4ee69.gif =0.

Решение.

х = а – единственное решение. Так как хhello_html_m88d8014.gif1, то аhello_html_ma90dc73.gif.

Ответ. Если аhello_html_ma90dc73.gif, то х = а; если а = 1, то решений нет.


в) Решить неравенство hello_html_m1005c80b.gif

Решение.

Данное уравнение равносильно системе:

hello_html_m4bfad5bf.gif

Отсюда х = а – корень исходного уравнения при а любом, а х = 1 – корень лишь при аhello_html_3813d461.gif 1.

Ответ. Если а<1, то х = а или х = 1;

Если а = 1, то х = 1; если а > 1, то х = а.


  1. Итоги занятия.


















Общая информация

Номер материала: ДБ-210996

Похожие материалы

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»