162014
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаСтатьиФормирование метопредметных компетенций учащихся в процессе интеграции математики с другими науками

Формирование метопредметных компетенций учащихся в процессе интеграции математики с другими науками

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

КГУ «Школа-интернат для одаренных детей «Озат»

Алгуатова Шолпан Маратовна, учитель математики

Формирование метопредметных компетенций учащихся в процессе интеграции математики с другими науками

Межпредметные связи в учебно - воспитательном процессе современной школы.

В настоящее время, пожалуй, нет необходимости доказывать важность межпредметных связей в процессе преподавания. Они способствуют лучшему формированию отдельных понятий внутри отдельных предметов, групп и систем, так называемых межпредметных понятий, то есть таких, полное представление о которых невозможно дать учащимся на уроках какой-либо одной дисциплины. Современный этап развития науки характеризуется взаимопроникновением наук друг в друга.

Необходимость связи между учебными предметами диктуется также дидактическими принципами обучения, воспитательными задачами школы, связью обучения с жизнью, подготовкой учащихся к практической деятельности.

Прогрессивные педагоги разных эпох и стран Я. А. Каменский, К. Д. Ушинский, А. И. Герцен, Н. Г. Чернышевский подчеркивали необходимость взаимосвязи между учебными предметами для отражения целостной картины природы в голове ученика, для создания истинной системы знаний и правильного миропонимания, а также необходимость обобщенного познания и целостности познавательного процесса. К ним отнесем следующее методическое положение: преемственность в содержании отдельных дисциплин, опора при изучении и закреплении материала на знания по другим предметам, развитие общих для разных предметов идей, сближение родственных предметов, формирование обобщенных познавательных умений.

В преподавании математики широко используется связь с географией, физикой, химией, биологией, историей и т. д. Целесообразно включать в содержание преподавания математики факты из науки, а также из жизни и деятельности ученых, выдающихся людей. Так же совместно с учителями географии, химии, биологии проводить интегрированные уроки. Интеграция в обучении позволяет выполнить развивающую функцию, необходимую для всестороннего и целостного развития личности учащегося, развития интересов, мотивов, потребностей к познанию. Без хорошо продуманных методов обучения трудно организовать усвоение программного материала. Вот почему следует совершенствовать те методы и средства обучения, которые помогают вовлечь учащихся в познавательный поиск, в труд учения.

Такие уроки развивают потенциал учащихся, побуждают к познанию окружающей действительности, к развитию логики мышления, коммуникативных способностей.

Межпредметные связи характеризуются, прежде всего, своей структурой, а поскольку внутренняя структура предмета является формой, то мы можем выделить следующие формы связей:

- по составу.

- по направлению действия.

- по способу взаимодействия направляющих элементов.

Исходя из того, что состав межпредметных связей определяется содержанием учебного материала, формируемыми навыками, умениями и мыслительными операциями, то в первой их форме мы можем выделить следующие типы межпредметных связей:

- содержательные;

- операционные;

- методические;

- организационные.

В третьей форме межпредметных связей, по временному фактору, выделяют следующие типы связей:

- хронологические;

- хронометрические.

Хронологические - это связи по последовательности их осуществления.

Хронометрические – это связи по продолжительности взаимодействия связеобразующих элементов.

Каждый из этих двух типов подразделяется на виды межпредметных связей. (См. Табл.1).


Таблица 1.

Типы межпредметных связей. Классификация межпредметных связей.


Виды межпредметных связей

1) По составу

1) содержательные

по фактам, понятиям законам, теориям, методам наук

2) операционные

по формируемым навыкам, умениям и мыслительным операциям

3) методические

по использованию педагогических методов и приемов

4) организационные

по формам и способам организации учебно-воспитательного процесса

2) По направлению

односторонние,

двусторонние,

многосторонние

Прямые; обратные, или восстановительные

3) По способу взаимодействия связеобразующих элементов (многообразие вариантов связи)


1) хронологические



2)хронометрические

1) преемственные

2) синхронные

3) перспективные

1) локальные

2) среднедействующие

3) длительно действующие


Специфика содержания и межпредметные связи курса математики и других предметов.

Предметы естественно-математического цикла дают учащимся знания о живой и неживой природе, о материальном единстве мира, о природных ресурсах и их использовании в хозяйственной деятельности человека. Общие учебно-воспитательные задачи этих предметов направлены на всестороннее гармоничное развитие личности. Важнейшим условием решения этих общих задач является осуществление и развитие межпредметных связей предметов, согласованной работы учителей-предметников.

Изучение всех предметов естественно-научного цикла тесно связано с математикой. Она дает учащимся систему знаний и умений, необходимых в повседневной жизни и трудовой деятельности человека, а также важных для изучения смежных предметов.

Ниже приведена схема основных взаимосвязей предметов естественно-математического цикла


hello_html_3d653df.gif


На основе знаний по математике в первую очередь формируются общепредметные расчетно-измерительные умения. Преемственные связи с курсами естественнонаучного цикла раскрывают практическое применение математических умений и навыков. Это способствует формированию у учащихся целостного, научного мировоззрения.

Для более наглядного понимания специфики межпредметных связей математики с другими предметами, рассмотрим таблицу.


Таблица 2.

Математическое содержание тем учебных предметов.


Предмет

Учебная тема

Математическое содержание

9,10

Физика

Равноускоренное движение

Линейная функция, производная функции

7, 8,10

 

Движение, взаимодействие тел. Электричество

Прямая и обратная пропорциональная зависимость

9,10

 

Механика

Векторы, метод координат, производная, функция. График функции

11

 

Оптика

Симметрия

9,10

 

Кинематика

Векторы, действия над векторами

10,11

Информатика

Алгоритм, программа

Уравнения, неравенства

6

География

Изображение земной поверхности

Масштаб, координаты на плоскости

8,9

Химия

  • Масса, объем и количество вещества,

  • Задачи с массовой долей выхода продукта реакции

  • Расчеты массовой доли примесей по данной массе смеси

  • Растворы

  • Определение формулы вещества по массовым долям элементов

Уравнения, проценты

8

Черчение

  • Техника выполнения чертежей и правила их оформления.

  • Аксонометрические проекции. Деление окружности на равные части, сопряжение

Параллельность, перпендикулярность прямых, измерение отрезков и углов, окружность, масштаб, параллельное проецирование

10,11

Экономика

 

Проценты, уравнения, неравенства


Курс алгебры и начал анализа наглядно показывает универсальность математических методов, демонстрирует основные этапы решения прикладных задач. Аксиоматическое построение курса геометрии создает базу для понимания логики построения любой научной теории, изучаемой в курсах физики, химии, биологии.

Важную роль в осуществлении межпредметных связей играет математическое моделирование. Можно привести множество примеров того, как абстрактные понятия, изучаемые на уроках математики, выражают не связанные друг с другом закономерности реального мира. При изучении линейной функции полезно показать учащимся, что она может описывать зависимость между длиной стержня и температурой нагревания:, между объемом газа и его температурой при постоянном давлении: (закон Гей-Люсака),давлением и температурой газа при постоянном объеме: p = p0 (1+β t) (закон Шарля), скоростью и временем при равноускоренном движении: ʋ = ʋ0 + at и т. д. При изучении квадратичной функции y = ax2 можно привести примеры зависимости пути от времени при равноускоренном движении hello_html_m61f66bda.gif, формулу мощности электрического тока P = I2R при постоянном сопротивлении и другие формулы.

Использование межпредметных связей - одна из наиболее сложных методических задач учителя математики. Она требует знаний содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя с учителями химии, физики, посещения открытых уроков, совместного планирования уроков и т.д.

Учитель математики с учетом общешкольного плана учебно-методической работы разрабатывает индивидуальный план реализации межпредметных связей в математических курсах. Методика творческой работы учителя включает ряд этапов:

  1. изучение раздела "Межпредметные связи" по каждому математическому курсу и опорных тем из программ и учебников других предметов, чтение дополнительной научной, научно-популярной и методической литературы;

  2. поурочное планирование межпредметных связей с использованием курсовых и тематических планов;

3) разработка средств и методических приемов реализации межпредметных связей на конкретных уроках;

4) разработка методики подготовки и проведения комплексных форм организации обучения;

5) разработка приемов контроля и оценки результатов осуществления межпредметных связей в обучении.

Рассмотрим межпредметные связи математики и биологии, а так же математики и химии. Хотя в биологии широко используются результаты и методы, заимствованные из чистой математики, сама она по существу представляет собой прикладную научную дисциплину.

В биологии специалисты не могут выполнять важные исследования,не прибегая к непосредственному сотрудничеству с учеными математиками, которые в процессе своей подготовки не получают глубоких биологических знаний. Поэтому сотрудничество между этими специалистами является важной особенностью почти всех научных исследований в области биологии.

Существуют ситуации, когда требуется весьма незначительное сотрудничество. Так, биолог, имеющий некоторую математическую подготовку, сможет довольно точно вывести дифференциальное уравнение в частных производных, описывающее сложный физиологический процесс, однако он не сможет найти его решение. Эту задачу можно передать непосредственно математику с простой просьбой “получить ответ”. Такой порядок может оказаться удовлетворительным, если не возникнут какие-либо затруднения. В этом случае работа математика носит преимущественно вспомогательный характер, и настоящего сотрудничества здесь не требуется.

Однако вполне возможно, что для решения уравнений нужны некоторые дополнительные условия или допущения, либо их трудно решить именно в той форме, в какой они представлены. В этом случае математик может ввести дополнительные ограничения или произвести некоторые изменения, позволяющие решить эти уравнения. Но может оказаться, что произведенные им изменения не соответствуют духу первоначальной биологической задачи, и в результате будет затрачено много сил на сложные, но бесполезные математические расчеты в поисках точного решения ошибочной задачи.

Для того чтобы математик узнал, что именно, в конечном счете, допустимо с точки зрения биологии, он должен проявить интерес к самой биологической задаче и познакомиться с ней во всех деталях. Тесное сотрудничество между математиком и биологом должно начинаться по возможности на самом начальном этапе научно-исследовательской работы и продолжаться до ее завершения. Биолог должен быть готов скорректировать или изменить свои концепции и гипотезы в соответствии с возможностями математических и вычислительных методов, а математику не придется двигаться в ложном направлении.

В значительной мере этому способствует развитие взаимосвязи между биологией и математикой ещё в средней общеобразовательной школе, требующей проведения консультаций и научных исследований на стыке между математическим и биологическим предметами. Часто такое сотрудничество оказывается очень полезным и в других важных областях, возникших на стыке нескольких различных дисциплин.

В современном мире множество отраслей, связанных с химией, например такие, как пищевая, фармацевтическая, тяжёлая промышленность (производство сплавов чёрных и цветных металлов), медицина, фармакология и т.д. Однако все они связаны не только с химией, но и с математикой, так как приходится решать задачи на процентное содержание в продукте питания, металле, лекарстве, косметике и т.д. тех или иных веществ.

Задачи на смеси и сплавы при первом знакомстве с ними вызывают у учащихся общеобразовательных классов затруднения. Самостоятельно справиться с ними могут немногие.

Трудности при решении этих задач могут возникать на различных этапах:

- составления математической модели (уравнения, системы уравнений, неравенства и т. п.;

- решения полученной модели;

- анализа математической модели (по причине кажущейся ее неполноты: не хватает уравнения в системе и пр.).

Однако при тщательном анализе задачи, вышеуказанные трудности преодолимы. Этому способствуют чертежи, схемы, таблицы и пр. Каждый учащийся сам для себя делает вывод об уровне сложности той или иной задачи и месте, где эта сложность возникает.

Основными компонентами в этих задачах являются:

- масса раствора (смеси, сплава);

- масса вещества;

- доля (% содержание) вещества.

При решении большинства задач этого вида, удобнее использовать таблицу, которая нагляднее и короче обычной записи с пояснениями. Зрительное восприятие определенного расположения величин в таблице дает дополнительную информацию, облегчающую процесс решения задачи и её проверки.



Общая информация

Номер материала: ДБ-100353

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.