Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Биология / Презентации / Генетические задачи с использованием статистических критериев (ХИ-квадрат) и теории вероятности

Генетические задачи с использованием статистических критериев (ХИ-квадрат) и теории вероятности



  • Биология

Поделитесь материалом с коллегами:

Использование критерия χ2 для решения генетических задач. Основы теории вероя...
Статистические критерии. Основные термины: Выборка - часть генеральной совоку...
Все статистические критерии используются для проверки нулевой гипотезы. Н0 –...
Критерий χ2 Используется для сравнения частот распределений в составе вариаци...
Формулы
Оценка значений критерия: Критические (стандартные) значения χ2 определяются...
Задача: При скрещивании растений фасоли были получены следующие семена: Докаж...
Если χ2 ф > χ2 ст., то Н0 – опровергается Если χ2 ф < χ2 ст., то Н0 – приним...
Задача: В популяции человека глухота наследуется в определенном соотношении....
Задача: При скрещивании дигетерозиготных растений мака были получены следующи...
Основы теории вероятности р – вероятность события, измеряется в % или долях е...
Формула для нахождения вероятности:
Вероятность двух и более событий Если достаточно хотя бы одного события то ве...
2.1. Если события не зависят друг от друга. У попугаев ген зеленой окраски (А...
2.1. Если события зависят друг от друга. В чашке лежат 46 красных больших, 22...
СПАСИБО ЗА ВНИМАНИЕ
1 из 16

Описание презентации по отдельным слайдам:

№ слайда 1 Использование критерия χ2 для решения генетических задач. Основы теории вероя
Описание слайда:

Использование критерия χ2 для решения генетических задач. Основы теории вероятности

№ слайда 2 Статистические критерии. Основные термины: Выборка - часть генеральной совоку
Описание слайда:

Статистические критерии. Основные термины: Выборка - часть генеральной совокупности элементов, которая охватывается наблюдением. N или n – объем выборки (сколько всего повторов признака рассмотрено). Н0 – нулевая гипотеза. k- количество степеней свободы (табл.). α – уровень значимости (табл.: 5; 1; 0,1%).

№ слайда 3 Все статистические критерии используются для проверки нулевой гипотезы. Н0 –
Описание слайда:

Все статистические критерии используются для проверки нулевой гипотезы. Н0 – гипотеза, утверждающая, что все отличия в рассматриваемых 2-х выборках случайны, т.е. выборки одинаковы по данному признаку. Если Н0 подтверждается – признак в выборках не отличается. Если Н0 опровергается – выборки по данному признаку разные.

№ слайда 4 Критерий χ2 Используется для сравнения частот распределений в составе вариаци
Описание слайда:

Критерий χ2 Используется для сравнения частот распределений в составе вариационных рядов, а также проверке соответствия статистическим и генетическим законам.

№ слайда 5 Формулы
Описание слайда:

Формулы

№ слайда 6 Оценка значений критерия: Критические (стандартные) значения χ2 определяются
Описание слайда:

Оценка значений критерия: Критические (стандартные) значения χ2 определяются по таблице на пересечении k и заданного уровня вероятности a Если χ2 ф > χ2 ст., то Н0 – опровергается Если χ2 ф < χ2 ст., то Н0 – принимается Таблица критических значений χ2 k a 0,10(90) 0,05(95) 0,01(99) 1 2,706 3,841 6,635 2 4,605 5,991 9,210 3 6,251 7,815 11,341 4 7,779 9,488 13,277 5 9,236 11,070 15,086 6 10,645 12,592 16,812 7 12,017 14,067 18,475 8 13,362 15,507 20,090 9 14,684 16,919 21,666 10 15987 18,307 23,209

№ слайда 7 Задача: При скрещивании растений фасоли были получены следующие семена: Докаж
Описание слайда:

Задача: При скрещивании растений фасоли были получены следующие семена: Докажите, используя критерий хи-квадрат, что данные признаки наследуются моногенно. красные крупные красные мелкие Белыекрупные белые мелкие 40 23 13 3 Фен.класс Наблюдаемое (Н) Ожидаемое (О) Н-О (Н-О)2/ О Белые семена Красные семена Всего Крупные семена Мелкие семена Всего 16 63 79 53 26 79 19,75 59,25 79 59,25 19,75 79 -3,75 3,75 -6,25 6,25 0,712025 0,237342 0,949367 0,659283 1,977848 2,637131

№ слайда 8 Если χ2 ф &gt; χ2 ст., то Н0 – опровергается Если χ2 ф &lt; χ2 ст., то Н0 – приним
Описание слайда:

Если χ2 ф > χ2 ст., то Н0 – опровергается Если χ2 ф < χ2 ст., то Н0 – принимается Окраска k = 2-1 = 1; Размер k = 2-1 = 1; χ2 ф = 3,84, при a = 5% Окраска: 0,949 < 3,84, значит Н0 принимается, распределения одинаковые и подчиняются моногенному наследованию. Размер: 2,637 < 3,84, значит Н0 принимается, распределения одинаковые и подчиняются моногенному наследованию. Таблица критических значений χ2 k a 0,10(90) 0,05(95) 0,01(99) 1 2,706 3,841 6,635 2 4,605 5,991 9,210 3 6,251 7,815 11,341 4 7,779 9,488 13,277 5 9,236 11,070 15,086 6 10,645 12,592 16,812 7 12,017 14,067 18,475 8 13,362 15,507 20,090 9 14,684 16,919 21,666 10 15987 18,307 23,209

№ слайда 9 Задача: В популяции человека глухота наследуется в определенном соотношении.
Описание слайда:

Задача: В популяции человека глухота наследуется в определенном соотношении. Статистически среди 1000 детей от гетерозиготных родителей получены следующие данные: Проверьте, используя критерий хи-квадрат, моногенно ли наследуется глухота. k = 2-1= 1 при 0,01 χ2 ф = 6,635 131,46 > 6,35, значит Н0 отклоняется, распределения разные и исследуемое признак обусловлен несколькими генами. Нормальный слух Глухота 907 93 Фен. Класс Наблюдаемое (Н) Ожидаемое (О) Н-О (Н-О)2/ О Норма 907 750 157 32,86533 Глухота 93 250 -157 98,596 Всего 1000 1000 131,4613

№ слайда 10 Задача: При скрещивании дигетерозиготных растений мака были получены следующи
Описание слайда:

Задача: При скрещивании дигетерозиготных растений мака были получены следующие растения: Проверьте, используя критерий хи-квадрат, подчиняется ли данное наследование 3-му закону Менделя. k = 4-1= 3 при 0,05 χ2 ф = 6,25 74,86 > 6.25, значит Н0 отклоняется, распределения разные и исследуемое расщепление не соответствует 3-му закону Менделя. красныевысокие Красные низкие Желтые высокие Желтые низкие 85 5 8 27 Фен. Класс Наблюдаемое (Н) Ожидаемое (О) Н-О (Н-О)2/ О красные высокие 85 70,31 14,69 3,068056 Красные низкие 5 23,44 -18,44 14,50417 Желтые высокие 8 23,44 -15,44 10,16817 Желтые низкие 27 7,81 19,19 47,1245 Всего 125 74,86489

№ слайда 11 Основы теории вероятности р – вероятность события, измеряется в % или долях е
Описание слайда:

Основы теории вероятности р – вероятность события, измеряется в % или долях единицы. Основные свойства: 0 < p < 1 или 0% < p < 100% р невозможного события = 0; р обязательного события = 1.

№ слайда 12 Формула для нахождения вероятности:
Описание слайда:

Формула для нахождения вероятности:

№ слайда 13 Вероятность двух и более событий Если достаточно хотя бы одного события то ве
Описание слайда:

Вероятность двух и более событий Если достаточно хотя бы одного события то вероятности складывают: р(А или В) = р(А) + р(В) В пакете насыпано 100 семян чечевицы. 35 красных, 15 белых, 40 желтых и 20 черных. Какова вероятность достать черное или белое семя с одной попытки? р= 15/100 + 20/100 = 0,35 или 35% 2) Если должны произойти оба события то их вероятности умножают. Р (А и В) = р(А)*р(В)

№ слайда 14 2.1. Если события не зависят друг от друга. У попугаев ген зеленой окраски (А
Описание слайда:

2.1. Если события не зависят друг от друга. У попугаев ген зеленой окраски (А) и пятнистости перьев (В) сцеплены с Х-хромосомой. Рассчитайте вероятность наличия в потомстве коричневых пятнистых самцов от скрещивания: Зеленого пятнистого самца (полученного от скрещивания линейных коричневой самки и зеленого пятнистого самца) и коричневой самки. Расстояние между генами составляет 10 морганид. Какова вероятность, что из 2-х яиц такие признаки будут нести два птенца? Решение: Р: ♀Хаb x ♂XABXab некроссоверные кроссоверные G Хаb Y Хаb XAB ХАb XаB р=1/2=0,5 р=(1 – 0,1)/2=0,45 р = 0,1/2=0,05 F особи из некросоверных гамет 1) ХаbХаb 2) ХаbXAB 3) ХаbY 4) XABY р= 0,5*0,45=0,225 или 22,5% на каждую всего 90% F особи из кроссоверных гамет 1) ХAbХаb 2) ХаBXAB 3) ХAbY 4) XaBY р= 0,5*0,05=0,025 или 2,5% на каждую всего 10% р (2-х птенцов) = 0,025*0,025 = 0,000625 или 0,0625%

№ слайда 15 2.1. Если события зависят друг от друга. В чашке лежат 46 красных больших, 22
Описание слайда:

2.1. Если события зависят друг от друга. В чашке лежат 46 красных больших, 22 красных маленьких, 20 белых больших и 10 белых маленьких фасолины. Рассчитайте вероятность того, что все три из трех случайно выбранных фасолин будут белые большие. 2. Рассчитайте вероятность того, что вторая вытащенная фасолина будет белой маленькой. Р = р(А)*р(А/В)*р(В/С) р = 20/100*19/99*18/98=0,20*0,192*0,184=0,0071 2) Два варианта событий: А - Первая фасолина белая и вторая белая р(А)=10/100*9/99=0,1*0,09=0,009 В - Первая фасолина не белая, вторя белая р(В)=90/100*10/99=0,9*0,1=0,09 р = 0,009+0,09=0,099 примерно 10%.

№ слайда 16 СПАСИБО ЗА ВНИМАНИЕ
Описание слайда:

СПАСИБО ЗА ВНИМАНИЕ


Автор
Дата добавления 01.11.2016
Раздел Биология
Подраздел Презентации
Просмотров61
Номер материала ДБ-308630
Получить свидетельство о публикации


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх