Инфоурок / Математика / Другие методич. материалы / Геометрические фигуры с недостающими элементами как дидактический материал для тематического и итогового повторения
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Геометрические фигуры с недостающими элементами как дидактический материал для тематического и итогового повторения

библиотека
материалов

Геометрические фигуры с недостающими элементами как дидактический материал для тематического и итогового повторения

Изотова Ирина Юрьевна

учитель математики и информатики

МОУ СШ № 7 Центрального района Волгограда


В задачах из школьных учебников по геометрии, как правило, явно фигурируют данные и искомые величины. Поэтому, усилия решающего направлены на отыскание зависимостей между этими величинами. Выполнять такие упражнения, безусловно, надо, однако ограничиваться только этим не следует. Дело в том, что на практике часто приходится иметь дело с такими ситуациями, в которых следует, прежде всего, выяснить какие данные необходимыvи как их получить. В этом смысле особый интерес представляет рассмотрение таких фигур, у которых отдельные элементы непосредственным измерением найти нельзя, поскольку это не позволяют сделать либо возможности инструментов, либо особенности фигуры (некоторые ее элементы могут быть недоступны или исключены). В таком случае при решении задач на вычисление приходится очень часто прибегать к геометрическим построениям, исследованиям, доказательствам, в результате чего задача приобретает комплексный характер.

Вот некоторые примеры отдельных задач с исключениями элементами.



Задача 1.

Оhello_html_61153a71.gifпределить, пользуясь линейкой и транспортиром, градусную меру углов четырехугольника, у которого все вершины исключены.











Решение:

Соединим две произвольные точки M и N, принадлежащие смежным сторонам четырехугольника. Получим треугольник, у которого одна сторона MN, а две другие АM и АN, где А одна из недоступных вершин четырехугольника. Тогда углы M и N треугольника АMN можно измерить, а третий угол (один из углов четырехугольника) – найти вычислением. Таким способом найдем три угла, а четвертый угол определим вычитанием из известной суммы углов четырехугольника суммы трех найденных углов.

При решении задач с исключенными элементами используются не только характеристические свойства фигур, но и геометрические преобразования, в частности параллельны перенос, симметрия, подобие.

Задача 2.

В модели трапеции, вырезанной из бумаги, оторваны все углы. Проведите доступные части диагоналей. Определите длины диагоналей трапеции.

Решение:

hello_html_399fc875.gif










Выполним параллельный перенос боковых сторон трапеции. Из произвольной точки Е верхнего основания трапеции проведем ЕА1 || АВ, ЕD || CD.

Точки H и F – середины ЕА1 и ЕD1. Проведем среднюю линию трапеции MN. Тогда MH + FN = ВС.

Имея среднюю линию и длину верхнего основания ВС можно ответить на вопрос задачи. На средней линии MN отложим отрезок LN, равный BC. Проведем LK || CD. BCDK – параллелограмм. На его диагонали BD лежит точка P – середина отрезка LN. Проведем PQ || CN и соединим точки Q и N. Диагональ BD проходит через точку Р параллельно QN. Но диагональ BCDK является одновременно диагональю трапеции. Значит отрезок BD искомый и BD = 2QN.

Аналогично определяется и вторая диагональ.

Задача 3.

Все три вершины треугольники исключены. Определите площадь треугольника.

Решение:

(I способ)

Используем теорему «Медиана треугольника делит пополам всякий отрезок соединяющий две точки сторон треугольника и параллельный стороне к которой проведена медиана».

Пусть имеем hello_html_cd3c748.gif, вершины которого исключены. Проведя в hello_html_cd3c748.gifдва отрезка, параллельные стороне ВС, находим их середины. Полученные две точки определяют прямую, которой принадлежит медиана, проведенная из вершины А. Проведя доступную часть медианы, получим середину стороны ВС – точку N.

Аналогично определяется середина стороны АВ – точка М. Значит МN - средняя линия hello_html_cd3c748.gif, поэтому МN=0,5 АС.

Из любой зточки К средней линии МN опускаем перпендикуляр на сторону АС и получаем отрезок KL, равный половине высоты, проведенной к АС. Измерив длину MN и KL найдем hello_html_6d691869.gif.

(II способ)

Определим длины сторон hello_html_7ad7e2f5.gif, удвоив средние линии треугольника, найденные так же как в I способе. Пусть АВ=с, ВС=а, АС=в. Теперь вычислим площадь треугольника по формуле Герона

hello_html_6a9bd3a8.gif

(III способ)

Построим вспомогательный hello_html_m2f799612.gif, стороны которого соответственно параллельны сторонам данного и равноотстают от них.

hello_html_m71a7a3f1.gif










Построив биссектрисы углов А1 и В1 найдем точку их пересечения F. Проведем hello_html_m46a294ff.gif. hello_html_m7a2a8e32.gif подобен hello_html_m46f32d2e.gif. Пусть их коэффициент подобия равен к.

hello_html_m65a38068.gifподобен hello_html_m507432f3.gif, их коэффициент подобия равен тоже к, поскольку

hello_html_49dfa732.gif.

Отсюда hello_html_2c18de79.gif или hello_html_176d760d.gif.

hello_html_1a350ac0.gif, а так же длины отрезков DF и DF1 доступны для измерения.

Уже тот факт, что задача допускает несколько способов решения утверждает методическую целесообразность ее использования.

Фигуры с недостающими элементами дают широкие возможности для составления задач, требующих значительного теоретического багажа. Такие задачи представляют особую ценность при тематическом и обобщающем повторении, когда приходится повторять материал, уже известный учащимся, и потому не вызывающий такого интереса как новый.

Будучи насыщенным математическим содержанием и неся хорошую умственную нагрузку, такие задачи способствуют активизации интеллектуальной деятельности учащихся.

Такие задачи являются также полезным дидактическим материалом для самостоятельных практических и лабораторных работ по геометрии. Для этой цели изготавливаются модели различных фигур с исключенными элементами. При проведении лабораторных работ учитель раздает учащимся модели фигур и формулирует задание. Ученики прямо на полученной модели выполняют необходимые построения, измерения, а результаты заносят в тетрадь. В тетради даются краткое описание хода работы, необходимые обоснования, доказательства и вычисления. После проверки учителем на модель наклеивается чистая бумага и пособие снова готово к использованию.





Краткое описание документа:

Фигуры с недостающими элементами дают широкие возможности для составления задач, требующих значительного теоретического багажа. Такие задачи представляют особую ценность при тематическом и обобщающем повторении, когда приходится повторять материал, уже известный учащимся, и потому не вызывающий такого интереса как новый.

Будучи насыщенным математическим содержанием и неся хорошую умственную нагрузку, такие задачи способствуют активизации интеллектуальной деятельности учащихся.

Такие задачи являются также полезным дидактическим материалом для самостоятельных практических и лабораторных работ по геометрии. Для этой цели изготавливаются модели различных фигур с исключенными элементами. При проведении лабораторных работ учитель раздает учащимся модели фигур и формулирует задание. Ученики прямо на полученной модели выполняют необходимые построения, измерения, а результаты заносят в тетрадь. В тетради даются краткое описание хода работы, необходимые обоснования, доказательства и вычисления. После проверки учителем на модель наклеивается чистая бумага и пособие снова готово к использованию.

Общая информация

Номер материала: 551655

Похожие материалы