Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Геометрический смысл производной. Материалы к зачету по алгебре и началам анализа (11 класс)

Геометрический смысл производной. Материалы к зачету по алгебре и началам анализа (11 класс)

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика

Поделитесь материалом с коллегами:

Материалы к зачету по алгебре и началам анализа

11 кл.

КМКК 2011-20012 уч. г.

Тема: Производная и её геометрический смысл.

ТЕОРИЯ

  1. Дайте определение производной. Терминология.

  2. Что такое мгновенная скорость?

  3. Формула для вычисления средней скорости движения.

  4. Физический смысл производной.

  5. Алгоритм вычисления производной по определению.

  6. Правила дифференцирования.

  7. Формулы для вычисления производных линейной (объяснить, используя физический смысл производной) и степенной функций.

  8. Чему равна производная постоянной? Объяснить, используя физический смысл производной.

  9. Решение основных видов задач на производную: 1. Нахождение значения производной в заданной точке. 2. Решение уравнений hello_html_3b5d5b34.gif 3. Неравенствhello_html_m2fc79168.gif

  10. Таблица производных простых функций.

  11. Таблица производных сложных функций.

  12. В чём состоит геометрический смысл производной?

  13. Уравнение касательной к графику данной функции, проходящей через данную точку.

ПРАКТИЧЕСКАЯ ЧАСТЬ

В8


  1. Прямая y~=~7x-5параллельна касательной к графику функции y~=~x^2+6x-8. Найдите абсциссу точки касания.

  1. Прямая y~=~-4x-11является касательной к графику функции y~=~x^3+7x^2+7x-6. Найдите абсциссу точки касания.

  1. На рисунке изображен график функции y=f(x), определенной на интервале (-6; 8). Определите количество целых точек, в которых производная функции положительна.

task-1/ps/task-1.2

  1. На рисунке изображен график функции y=f(x), определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна.

MA.E10.B8.104_dop/innerimg0.jpg

  1. На рисунке изображен график функции y=f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=6или совпадает с ней.

MA.E10.B8.102_dop/innerimg0.jpg




  1. На рисунке изображен график функции y=f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).

task-3/ps/task-3.2

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-8; 3). В какой точке отрезка [-3; 2 ]f(x)принимает наибольшее значение.

task-4/ps/task-4.1

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -3 ]f(x)принимает наименьшее значение.

task-4/ps/task-4.7

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 4). В какой точке отрезка [-6; -1 ]f(x)принимает наибольшее значение.

task-4/ps/task-4.177


  1. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x)на отрезке [-6;9].

task-5/ps/task-5.1



  1. На рисунке изображен график производной функции f(x), определенной на интервале (-18; 6). Найдите количество точек минимума функции f(x)на отрезке [-13;1].

task-5/ps/task-5.3

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-11; 11). Найдите количество точек экстремума функции f(x)на отрезке [-10;10].

task-5/ps/task-5.5

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 4). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

task-6/ps/task-6.1

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-5; 7). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

task-6/ps/task-6.9


  1. На рисунке изображен график производной функции f(x), определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

task-7/ps/task-7.1

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

task-7/ps/task-7.3


  1. На рисунке изображен график производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x)параллельна прямой y=-2x -11или совпадает с ней.

task-8/ps/task-8.1

  1. На рисунке изображен график производной функции f(x), определенной на интервале (-4; 8). Найдите точку экстремума функции f(x)на отрезке [-2; 6 ].

task-9/ps/task-9.2

  1. На рисунке изображён график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.26

  1. На рисунке изображён график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.4





  1. На рисунке изображен график производной функции f(x), определенной на интервале (-4; 8). Найдите точку экстремума функции f(x)на отрезке [-2; 6 ].

task-9/ps/task-9.2

  1. На рисунке изображён график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.26

  1. На рисунке изображён график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.4

  1. На рисунке изображён график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.52

  1. На рисунке изображён график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.2





Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 07.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров151
Номер материала ДВ-236106
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх