Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Геометрия. Ее многообразие. 7 класс.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Геометрия. Ее многообразие. 7 класс.

библиотека
материалов
Многообразие геометрии
Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «измеряю») — раздел математики...
Предмет геометрии Конические сечения: круг,эллипс, парабола, гипербола Геомет...
Классификация Общепринятую в наши дни[ классификацию различных разделов геоме...
Геометрия многообразий. Топология — наука о непрерывных преобразованиях самог...
Постулаты Евклида[править | править исходный текст] Постулаты Евклида Постула...
История Муза геометрии, Лувр Традиционно считается, что родоначальниками геом...
Муза геометрии, Лувр В 1826 году Лобачевский, отказавшись от аксиомы параллел...
Геометрия в философии и искусстве Мартин де Вос. Семь сестёр. 1590 Со времён...
Спасибо за внимание!
10 1

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Описание презентации по отдельным слайдам:

№ слайда 1 Многообразие геометрии
Описание слайда:

Многообразие геометрии

№ слайда 2 Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «измеряю») — раздел математики
Описание слайда:

Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «измеряю») — раздел математики, изучающий пространственные структуры, отношения и их обобщения[1]. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамкахаксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1826 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий. Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основеинвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.

№ слайда 3 Предмет геометрии Конические сечения: круг,эллипс, парабола, гипербола Геомет
Описание слайда:

Предмет геометрии Конические сечения: круг,эллипс, парабола, гипербола Геометрия занимается взаимным расположением тел, которое выражается в прикосновении или прилегании друг к другу, расположением «между», «внутри» и т. п.; величиной тел, то есть понятиями о равенстве тел, «больше» или «меньше»; а также преобразованиями тел. Геометрическое тело представляет собой абстракцию ещё со времён Евклида, который полагал, что «линия есть длина без ширины», «поверхность есть то, что имеет длину и ширину». Точка представляет собой абстракцию, связанную с неограниченным уменьшением всех размеров тела, или пределом бесконечного деления. Расположение, размеры и преобразования геометрических фигур определяются пространственными отношениями[2]. Исследуя реальные предметы, геометрия рассматривает только их форму и взаимное расположение, отвлекаясь от других свойств предметов, таких как плотность, вес, цвет. Это позволяет перейти от пространственных отношений между реальными объектами к любым отношениям и формам, возникающим при рассмотрении однородных объектов, и сходным с пространственными. В частности, геометрия позволяет рассматривать расстояния между функциями[1]. Конические сечения: круг,эллипс, парабола, гипербола

№ слайда 4 Классификация Общепринятую в наши дни[ классификацию различных разделов геоме
Описание слайда:

Классификация Общепринятую в наши дни[ классификацию различных разделов геометрии предложил Феликс Клейн в своей«Эрлангенской программе» (1872). Согласно Клейну, каждый раздел изучает те свойства геометрических объектов, которые сохраняются (инвариантны) при действии некоторой группы преобразований, специфичной для каждого раздела. В соответствии с этой классификацией, в классической геометрии можно выделить следующие основные разделы. Евклидова геометрия, в которой предполагается, что размеры отрезков и углов при перемещении фигур на плоскости не меняются. Другими словами, это теория тех свойств фигур, которые сохраняются при их переносе, вращении и отражении. Планиметрия — раздел евклидовой геометрии, исследующий фигуры на плоскости. Стереометрия — раздел евклидовой геометрии, в котором изучаются фигуры в пространстве. Проективная геометрия, изучающую проективные свойства фигур, то есть свойства, сохраняющиеся при их проективных преобразованиях. Аффинная геометрия, изучающая свойства фигур, сохраняющиеся при аффинных преобразованиях. Начертательная геометрия — инженерная дисциплина, в основе которой лежит метод проекций. Этот метод использует две и более проекций (ортогональных или косоугольных), что позволяет представить трехмерный объект на плоскости. Сферический треугольник Современная геометрия включает в себя следующие дополнительные разделы. Многомерная геометрия. Неевклидовы геометрии. Сферическая геометрия. Геометрия Лобачевского. Риманова геометрия.

№ слайда 5 Геометрия многообразий. Топология — наука о непрерывных преобразованиях самог
Описание слайда:

Геометрия многообразий. Топология — наука о непрерывных преобразованиях самого общего вида, то есть свойства объектов, которые остаются неизменными при непрерывных деформациях. В топологии не рассматриваются никакие метрические свойства объектов. По используемым методам выделяют также такие инструментальные подразделы. Аналитическая геометрия — геометрия координатного метода. В ней геометрические объекты описываются алгебраическими уравнениями в декартовых (иногда аффинных) координатах и затем исследуются методами алгебры и анализа. Алгебраическая геометрия - изучает алгебраические многообразия (то есть множества, которые задаются полиномиальными уравнениями) с помощью методов современной общей алгебры. Дифференциальная геометрия — изучает линии и поверхности, задающиеся дифференцируемыми функциями, с помощью дифференциальных уравнений и методовтопологии.

№ слайда 6 Постулаты Евклида[править | править исходный текст] Постулаты Евклида Постула
Описание слайда:

Постулаты Евклида[править | править исходный текст] Постулаты Евклида Постулаты Евклида представляют собой правила построения с помощью идеального циркуля и идеальной линейки[6]: Всякие две точки можно соединить прямой линией; Ограниченную прямую линию можно неограниченно продолжить; Из всякого центра всяким радиусом можно описать окружность; Все прямые углы равны между собой; Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то при неограниченном продолжении этих двух прямых они пересекутся с той стороны, где углы меньше двух прямых. Другая формулировка пятого постулата (аксиомы параллельности), гласит[7]: Через точку вне прямой в их плоскости можно провести не более одной прямой, не пересекающей данную прямую. Постулаты Евклида

№ слайда 7 История Муза геометрии, Лувр Традиционно считается, что родоначальниками геом
Описание слайда:

История Муза геометрии, Лувр Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину[2]. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом. Первые же доказательства геометрических утверждений появились в работах Фалеса и использовали, по всей видимости, принцип наложения, когда фигуры, равенство которых необходимо доказать, накладывались друг на друга. Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием. В Греции в работах Гиппарха и Менелая также появились тригонометрия и геометрия на сфере[2]. Средние века немного дали геометрии[1], и следующим великим событием в её истории стало открытие Декартом в XVII векекоординатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Систематическое изложение аналитической геометрии было предложено Эйлером в 1748 году. В начале XVII века Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии и был впервые обобщён Понселе в 1822 году. Ещё раньше, в 1799 году Монж развил начертательную геометрию, связанную напрямую с задачами черчения. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями. Дифференциальная геометрия была систематизирована Монжем в 1795 году[2], её развитием, в частности теорией кривых и теорией поверхностей, занимался Гаусс. На стыке геометрии, алгебры и анализа возникли векторное исчисление, тензорное исчисление, метод дифференциальных форм.

№ слайда 8 Муза геометрии, Лувр В 1826 году Лобачевский, отказавшись от аксиомы параллел
Описание слайда:

Муза геометрии, Лувр В 1826 году Лобачевский, отказавшись от аксиомы параллельности Евклида построил неевклидову геометрию, названную его именем. Аксиома Лобачевского гласит, что через точку, не лежащую на прямой можно провести более одной прямой, параллельной данной. Лобачевский, используя эту аксиому вместе с другими положениями, построил новую геометрию, которая в силу отсутствия наглядности, оставалась гипотетической до 1868 года, когда было дано её полное обоснование. Лобачевский, таким образом, открыл принципы построения новых геометрических теорий и способствовал развитию аксиоматического метода[2]. Следующим шагом явилось определение абстрактного математического пространства. Проективные, аффинные и конформные преобразования, сохраняющиеся при этом свойства фигур, привели к созданию проективной, аффинной и конформной геометрий. Переход от трёхмерного пространства к n-мерному впервые был осуществлён в работахГрассмана и Кэли в 1844 году и привёл к созданию многомерной геометрии. Другим обобщением пространства стала риманова геометрия, предложенная Риманом в 1854 году[2]. Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию. В 70-х годах XIX века возникла теория множеств, с точки зрения которой фигура определяется как множество точек. Данный подход позволил по новому взглянуть на евклидову геометрию и проанализировать её основы, которые подверглись некоторым уточнениям в работах Гильберта[2]. Геометрия в философии и искусстве

№ слайда 9 Геометрия в философии и искусстве Мартин де Вос. Семь сестёр. 1590 Со времён
Описание слайда:

Геометрия в философии и искусстве Мартин де Вос. Семь сестёр. 1590 Со времён Древней Греции в основе геометрии лежат философские понятия. Определяя точку как «то, что не имеет частей», подход к ней отличается у Пифагора, который отождествляет точку с числовой единицей и у которого точка имеет только положение в пространстве и не имеет размера, и у Демократа, который строя атомистическую теорию, даёт точке «сверхчувственно малый» размер. К атомистическим представлениям восходят также определения линии и поверхности, где неделимыми являются «ширина» и «глубина», соответственно. Геометрия является пятым из семи свободных искусств по уровню обучения. Ей предшествует тривиум, состоящий из Грамматики, Риторики и Диалектики, а также Арифметика — старшая наука в квадривиуме, к которому также относятся Музыка и Астрономия[9]. Марциан Капелла в своём трактате «Свадьба Философии и Меркурия» создал визуальные образы всех семи искусств и в том числе Геометрии. Искусства олицетворяли женщины с соответствующими атрибутами, которые сопровождались известными представителями сферы. Геометрия держит в своих руках глобус и циркуль, которым она может мерить, реже угольник, линейку или компасы. Её сопровождает Евклид[10][11]. В честь геометрии назван астероид (376) Геометрия, открытый в 1893 году. Мартин де Вос. Семь сестёр. 1590

№ слайда 10 Спасибо за внимание!
Описание слайда:

Спасибо за внимание!

Автор
Дата добавления 18.09.2015
Раздел Математика
Подраздел Презентации
Просмотров311
Номер материала ДA-051264
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх