Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Информатика / Другие методич. материалы / Графическое решение систем линейных уравнений, для 10 класса
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Информатика

Графическое решение систем линейных уравнений, для 10 класса

библиотека
материалов

hello_html_511637c8.gifhello_html_m7b90a9fd.gifhello_html_4214a76c.gifhello_html_m573db137.gifhello_html_m2d7ed648.gifhello_html_m55d7cc36.gifhello_html_3300176b.gifЛабораторная работа

«Графическое решение системы уравнений с помощью диаграмм»


Задание: решить графически систему уравнений:

2у – х2=0

6х – 3у= -27

Ответы записать с точностью до 0,1. Оформить письменный отчет о работе, в который включить исходную и приведенную системы уравнений, диаграмму оценки решений и диаграммы точных решений системы уравнений, а также таблицы значений, на которых были построены диаграммы, и итоговый ответ.


Цель работы: научиться использовать диаграммы электронных таблиц для построения графиков функций с целью графического решения системы уравнений, возможности электронных таблиц для составления и оформления электронно-счетного бланка.


Теоретические сведения.

Для решения данной задачи потребуется преобразование обоих уравнений системы к виду y=f(x) (приведенный вид) и построение графиков получившихся функций. Точки пересечения обоих графиков и являются ответом задачи. Однако следует помнить о том, что графическое решение системы уравнений является приближенным, поэтому часто решение задачи производится в 2 этапа:

  1. Произвольно выбирается отрезок оси ОХ и несколько точек на нем. Для них строиться таблица, состоящая из трех столбцов, содержащих координаты x, y1 и y2: х – координата выбранной точки на отрезке оси ОХ, у1 – значение первой функции в точке х, у2 – значение второй функции в точке х. Эта таблица необходима для построения графиков обеих функций. По ней строиться диаграмма для оценки решения (типа график или ХУ-точечная), на которой определяются границы отрезков оси ОХ, содержащих абсциссы точек пересечения графиков обеих функций:

[x1; x2], [x3; x4] и т. п.

  1. Для каждого из полученных отрезков строиться отдельная диаграмма, причем расстояние между двумя соседними точками по оси ОХ должно быть не более заданной точности. Анализируя построенные диаграммы, определяют приближенное значение каждого решения заданной системы уравнений.


Практическая часть.

  1. Преобразовываем исходную систему уравнений в приведенную:

2у – х2 = 0, у = 0,5х2,

6х – 3у = -27 у = 2х + 9

  1. Запускаем Excel.

  2. Выполняем команду Файл, Параметры страницы и задаем:

    • на вкладке Поля: поля сверху и снизу по 1 см, а слева и справа по 1,5 см;

    • на вкладке Колонтитулы: опцию Нет для верхних и нижних колонтитулов.

  3. Выделяем столбцы В-I и с помощью команды Формат, Столбец, Ширина устанавливаем ширину каждого столбца равной 11. Аналогично ширину столбцов А и D устанавливаем равной 4,2. Убеждаемся, что в рабочем листе установлен шрифт Times New Roman Cyr, кегль 10, если это не так, то выделяем весь рабочий лист щелчком на поле выделения рабочего листа. Это поле – серый прямоугольник в левом верхнем углу рабочего листа (на пересечении заголовков строк и столбцов) и устанавливаем нужный шрифт.

  4. В первую ячейку первого столбца вводим фразу «Отчет по л/р «Диаграммы в электронных таблицах» и во вторую ячейку первого столбца вводим фразу «студент группы <№ своей группы> < Фамилия И. О.>» шрифтом кегля 16 курсивного начертания. Затем помещаем курсор в ячейку A1, выделяем название лабораторной работы в строке формул и устанавливаем полужирное начертание. Выделяем ячейки A1-I2 и щелкаем на кнопке Объединить и поместить в центре панели инструментов Форматирование – выделенный текст отцентрируется по ширине всех выделенных ячеек. Результат сохраняем в файле с именем diagr.xls.

  5. В ячейках В3 и F3 полужирным шрифтом кегля 12 записываем соответственно фразы «Исходная система уравнений» и «Приведенная система уравнений», в ячейках A4 – A6 и F4 – F6 соответственно буквы м, н, о для них устанавливаем выравнивание по правому краю и шрифт Symbol, в ячейках B4, B6 и G4, G6 записываем уравнения исходной и приведенных систем систем.

  6. Для оценки решений воспользуемся диаграммой, на которой отобразим одновременно графики обеих функций. Для этого потребуется построить таблицу координат для нескольких точек графиков функций. На первом этапе решения задачи достаточно выбрать абсциссы через 1 по оси ОХ. Для нашего примера выберем 21 точку на оси ОХ в интервале [-10; 10], для которых построим таблицу, а затем диаграмму.

Набираем в ячейки А7 фразу «Приблизительная оценка решения», устанавливаем в ней полужирный шрифт кегля 12 и объединяем и центрируем по столбцам А – I (см. п. 5)

Создаем первую таблицу для совместного построения двух графиков функций. Для этого заносим в рабочий лист следующую информацию:


Номер ячейки

Содержимое ячейки

Номер ячейки

Содержимое ячейки

А8

Таблица точек графиков

функций

В9

У1=0,5х^2

А9

х

В10

=0,5*(А10)^2

А10

-10

С9

Y2=2х+9

А11

=1+А10

С10

=2*А10+9


Содержимое ячеек В10, С10 копируем в ячейки В11, С11. Затем выделяем ячейки А11 – С11 и копируем их содержимое в диапазон А12 – С30. Таким образом, мы получаем первую таблицу координат для обоих графиков функций из приведенной системы уравнений. Оформим ее рамками. Для этого выделяем всю таблицу (ячейки А9 – С30). На выделенной области щелкаем правой клавишей, из выпавшего меню выбираем Формат ячейки, затем Граница, в появившемся меню выбираем Внешние и нажимаем Ок. Второй раз выделяем таблицу, вызываем меню Формат ячеек, Граница, Внутренние и делаем линии немного тоньше внешних, нажимаем Ок. Затем выделяем только ячейки А9 – С9 и повторяем операции для внешней рамки. В итоге таблица должна быть очерчена толстой черной рамкой, а внутри ячейки разграничены тонкими черными линиями. Шапка таблицы также должна быть очерчена толстой черной линией. Сохраним результаты работы.

  1. Теперь приступим к построению диаграммы (графиков функции). Построение диаграммы производиться мастером (особой программой) в несколько этапов, на каждом из которых мастер задает определенные вопросы, ответы на которые даются выбором из предлагаемых вариантов. Щелкаем на кнопке Мастера диаграмм панели инструментов Стандартная. Выбираем тип диаграммы – График, вид График с маркерами и щелкаем на кнопку Далее.

  2. Вторым шагом выбираем диапазон. Удерживая клавишу мыши, выделяем ячейки B9-C30. Убеждаемся, что в окне уже демонстрируется примерный вид конечной диаграммы. Щелкаем по кнопке Ряд и задаем значения по оси ОХ, для этого курсор устанавливаем в строку Подписи по оси Х и выделяем диапазон ячеек А9-А30. Затем нажимаем на кнопку Далее.

  3. Третьим шагом добавляем заголовок диаграммы и перемещаем ось Х. На вкладке Заголовки вводим название диаграммы «Диаграмма оценки решения», переходим на вкладку Линии сетки снимаем все галочки, на вкладке Легенда ставим маркер размещение внизу и нажимаем кнопку Готово.

  4. Перетаскиваем готовую диаграмму в ячейку Е9 и вытягиваем до Е30, а по ширине уменьшаем до столбца J.

  5. Приступаем к оформлению диаграммы. Два раза щелкаем на области построения диаграммы и делаем рамки невидимую, а цвет прозрачный. Переместим ось ОУ в точку 0 по оси ОХ для этого щелкаем правой клавишей мыши по оси ОХ и выбираем Формат оси, Шкала, Пересечение с осью У в категории номер и ставим значение 12. Сохраняем результат работы.

  6. Из построенной диаграммы видно, что исходная система уравнений имеет два решения, расположенные в промежутках [-3; -2] и [6;7]. Отметим эти точки на координатной плоскости кружками и подпишем их соответственно: «Первое решение» и «Второе решение». Для этого щелкаем на кнопке Рисование панели инструментов Стандартная – получаем на экране панель инструментов Рисование. С помощью кнопки Овал чертим на координатной плоскости вокруг одной из точек пересечения графиков функций круг. Затем на свободном пространстве с помощью кнопки Надпись делаем рамку (на уровне между 30 и 40 по оси ОУ). В рамке набираем «Первое решение». Щелкаем на кнопке Стрелка панели инструментов Рисование и соединяем прямой линией со стрелкой рамку с текстом и кружок. Внимание: следите, чтобы линия не пересекала оси координат, графики функций и координатные метки и числа.

После отпускания кнопки мыши на плоскости появится указательная стрелка, направленная на кружок (вытягивание стрелки идет от рамки к кружку). Аналогично оформляем вторую точку пересечения графиков функций. Сохраняем результаты работы.

Так как масштаб диаграммы не позволяет ответить на вопрос задания с указанной точностью, то для получения более точного решения следует построить аналогичные таблицы координат графиков функций и диаграммы только для указанных выше отрезков оси ОХ, причем приращение аргумента функции следует брать равным 0,1.

  1. Построение таблиц и диаграмм проведем методом копирования. Сначала набираем в ячейке А31 фразу «Первое решение системы уравнений» и центрируем ее по ширине первых 9 столбцов, затем копируем таблицу: ячейки А8 – С20 в ячейки А32 – С44. В ячейку А34 записываем число (-3), в ячейку А35 – формулу: =0,1+А34, которую затем скопируем в ячейки А35 – А44. В итоге получаем таблицу точек для построения графиков обеих заданных функций в окрестности первого решения. Сохраняем результаты работы.

  2. Теперь копируем диаграмму и помещаем ее в ячейку А33. Вопреки возможному ожиданию изменения вида диаграммы не произошло. Поэтому вносим в копию необходимые изменения следующим образом.

Сначала сокращаем высоту новой диаграммы до уровня последней строки соответствующей ей таблицы значений и изменяем ее название на «Диаграмма первого решения», щелкнув по заголовку диаграммы.

Щелкаем на синем графике и в строке формул электронной таблицы видим формулу: =РЯД(Лист1!$B$9;Лист1!$A$10:$A$30;Лист1!$B$10:$B$30;1). Заменяем в ней ссылки на соответствующие ячейки таблицы: А10 – А30 на А34 – А44 и В9 – В30 на В33 – В44 и нажимаем Enter. Аналогичные изменения производим и с малиновым графиком. Но при этом сразу же изменяется вид диаграммы, так как оси координат изменяют свой масштаб.

Форматируем оси координат. Двойной щелчок на любой из них вызывает появление диалогового окна Форматирование оси. В нем на вкладке Шкала изменяем значения в окнах Минимум и Максимум на 2 и 5 (для оси ОУ), цена основных и промежуточных делений – на 1 и 0,5 (для оси ОУ). Для оси ОХ Пересечение с осью ОУ в категории ставим номер 12, и число 1 между подписями делений и между делениями, а также снимаем все галочки (если они имеются). Сохраняем результаты работы.

  1. После произведенных замен на диаграмме сразу станет отчетливо видна точка пересечения графиков и ее абсцисса –2,7. Ординату точки пересечения получаем из таблицы – с учетом заданной точности она равна 3,6. Таким образом, получено первое решение заданной системы уравнений – точка с координатами (-2,7; 3,6). Эти координаты помещаем в качестве подписи на диаграмму (используя панель инструментов Рисование). Сохраняем результаты работы.

  2. Аналогично получаем и оформляем второе решение системы уравнений – точку (6,7; 22,4). Сохраняем результаты работы.

  3. Полученные ответы оформляем ниже последней диаграммы с помощью фразы «Итоговый ответ: { (-2.7; 3.6), (6.7; 22.4) }», для которой устанавливаем полужирный шрифт кегля 14. Также устанавливаем полужирный шрифт для строк двух последних таблиц, в которых содержатся координаты точек пересечения графиков функций (можно также установить красный цвет текста). Сохраняем результаты работы.

















Отчет по л/р "Диаграммы в электронных таблицах"

студента группы 2Б 136 Игнатьева И. И.


Исходная система уравнений

Приведенная система уравнений

2у-х^2=0




y=0,5x^2



6x - 3y = -27



y=2x+9



Приблизительная оценка решения

Таблица точек графиков функций







х

у1=0,5х^2

y2=2х+9









-10

50

-11







-9

40,5

-9







-8

32

-7







-7

24,5

-5







-6

18

-3







-5

12,5

-1







-4

8

1







-3

4,5

3







-2

2

5







-1

0,5

7







0

0

9







1

0,5

11







2

2

13







3

4,5

15







4

8

17







5

12,5

19







6

18

21







7

24,5

23







8

32

25







9

40,5

27







10

50

29







Первое решение системы уравнений

Таблица точек графиков функций


х

у1=0,5х^2

y2=2х+9

-3

4,5

3

-2,9

4,205

3,2

-2,8

3,92

3,4

-2,7

3,645

3,6

-2,6

3,38

3,8

-2,5

3,125

4

-2,4

2,88

4,2

-2,3

2,645

4,4

-2,2

2,42

4,6

-2,1

2,205

4,8

-2

2

5

Второе решение системы уравнений

Таблица точек графиков функций









х

у1=0,5х^2

y2=2х+9







6

18

21







6,1

18,605

21,2







6,2

19,22

21,4







6,3

19,845

21,6







6,4

20,48

21,8







6,5

21,125

22







6,6

21,78

22,2







6,7

22,445

22,4







6,8

23,12

22,6







6,9

23,805

22,8







7

24,5

23








Итоговый ответ:

{(-2,7; 3,6), (6,7; 22,4)}





Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 23.01.2016
Раздел Информатика
Подраздел Другие методич. материалы
Просмотров272
Номер материала ДВ-369557
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх