Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / График квадратичной функции, содержащей модуль.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

График квадратичной функции, содержащей модуль.

библиотека
материалов

8


XIII республиканский научный конкурс молодых исследователей «Шаг в будущее Осетии».



Секцияматематика.


«График квадратичной функции, содержащей переменную под знаком абсолютной величины








Автор:

Асламурзаева Белла Артуровна

СОШ 46, 9 «А» класс.

Научный руководитель:

Преподаватель математики СОШ 46 им. И.М.Дзусова

Дряева М.Г.



город Владикавказ, СОШ 46.
















Аннотация

Цель работы: рассмотреть построение графика квадратичной функции, содержащей переменную под знаком модуля.

Методы и приемы: рассмотрение, анализ и построение графиков функций, содержащих переменную под знаком модуля, обзор информации в сети Интернет.

Выводы:

1)Для построения графика функции y = |f(x)| , надо сохранить ту часть графика функции y = f(x), точки которой находятся на оси Ох или выше оси Ох, и симметрично отразить относительно оси Ох ту часть графика функции y = f(x), которая расположена ниже оси Ох.

2) Для построения графика y = f(|x|) надо сохранить ту часть графика функции y = f(|x|), точки которой на оси Оу или справа от неё и симметрично отразить эту часть графика относительно оси Оу.

3) Чтобы построить график функции |y|= x 2 – 6х +5 нужно:

Отбросить ту часть графика , которая лежит ниже оси

Ох, а оставшуюся часть симметрично отобразить

относительно оси Ох


























Задачи
1) Изучить литературу о свойствах абсолютной величины и квадратичной функции.
2)
Исследовать изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины.


1.
Введение.
Функция, определяемая формулой у=ах²+вх+с, где х и у переменные, а параметры а, в и слюбые действительные числа, причём а≠0, называется квадратичной
График функции у=ах²+вх+с есть парабола; осью симметрии параболы является прямая . При а>0 «ветви» параболы направлены вверх, при а<0 – вниз
Чтобы построить график квадратичной функции, нужно:
1)
найти координаты вершины параболы и отметить её в координатной плоскости;
2)
построить ещё несколько точек, принадлежащих параболе;
3)
соединить отмеченные точки плавной линией.
Определение: абсолютной величиной неотрицательного числа называется само это число, абсолютной величиной отрицательного числа называется противоположное ему положительное число.

hello_html_1d48a15f.gif

Свойства: 1 .|a| ≥0, 3 .|a∙b|=|a|∙|b|,

2. |a|²= a², 4. |a/b|=|a|/|b|, b≠0

2. Построение графика квадратичной функции, содержащей переменную под знаком модуля.
На примере функции у= x 2– 6х +5 я рассмотрела всевозможные случаи расположения модуля.

у = |x 2 – 6х +5|

у = | х | 2 – 6х +5

у = х² – 6|х| +5

у = |х|² - 6|х|+5

у = |х² – 6х| +5

у = |х² – 6|х| +5|

у = x 2 -|6х + 5|

|y|= x 2 – 6х +5
 
Пример 1:Построим график функции у = |x 2 – 6х +5|. 
Пользуясь определением модуля, рассмотрим два случая:

1) x 2– 6х +5≥ 0, тогда у= x 2– 6х +5.

Построим данную параболу. Выделим все точки параболы с неотрицательной ординатой.

2) x 2– 6х +5<0, тогда у= -(x 2– 6х +5) или -x 2+ 6х -5>0, y= -x 2+ 6х -5.

Построим график данной функции, и выделим все точки параболы с положительной ординатой. Все выделенные в обоих случаях точки образуют график функции у = |x 2 – 6х +5|. 

 . hello_html_ma68f63b.png

Итак ,можно сделать вывод: чтобы получить график функции у = |x 2 -6х + 5|, нужно часть параболы, расположенной ниже оси Ох, зеркально отобразить относительно оси Ох .
Пример 2:Рассмотрим график функции у = |х|²– 6х +5. 
Т. к. |х|²= х², то график функции у =|х|² - 6х +5 совпадет с графиком функции у = х² - 6х +5, не содержащей знак абсолютной величины.

hello_html_7761f4df.png
 .
Пример 3: Рассмотрим график функции у = х² – 6|х| +5. 
Воспользуемся определением модуля числа.

Пусть x≥0, тогда y= х² - 6х +5.

Построим параболу у = х² - 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х , т.е. часть, расположенную правее оси Оу.

2)Пусть x<0, тогда y= x² + 6х +5.

В той же координатной плоскости построим параболу у = х² +6х +5 и обведём ту её часть, которая соответствует отрицательным значениям х, т.е. часть, расположенную левее оси Оу. Обведённые части парабол вместе образуют график функции у = х² - 6|х| +5

 hello_html_4b608a2d.png

Итак, можно сделать вывод: для построения графика функции у = х² – 6|х| +5. надо сохранить ту часть графика , точки которой находятся на оси Oy или справа от нее, и симметрично отобразить ее относительно оси Оy.

Пример 4: Рассмотрим график функции у = |х|² - 6|х|+5. 
Т.к. |х|²= х², то график функции у = |х|² – 6|х| +5 совпадает с графиком функции у = х² – 6|х| +5, рассмотренном в примере 3.
 
Пример 5. Построим график функции у = |х² – 6х| +5. 
Для этого построим сначала график функции у = х² - 6х. Чтобы получить из него график функции у = |х² - 6х|, нужно часть параболы, расположенную ниже оси х, заменить линией ей симметричной относительно оси х. Т.к. нам hello_html_m2d06675c.png

Нужно построить график функции у = |х² - 6х| +5, то график рассмотренной нами функции у = |х² - 6х| нужно просто поднять по оси у на 5 единиц вверх.

  Пример 6: Построим график функции у = |х² – 6|х| +5|. 
Для этого сначала построим график функции у =х²- 6|х| +5. (см. пример 3).

Т. к. наша функция полностью находится под знаком модуля, то для того, чтобы построить график функции

у = |х² – 6|х| +5|, нужно часть параболы, расположенную ниже оси Ох, заменить линией ей симметричной относительно оси Ох.

hello_html_m58355636.png
 
Пример 7:Построим график функции у = x 2 -|6х + 5|.

Пользуясь определением модуля, рассмотрим два случая:

6х+5≥0, т.е. х ≥ -5∕6, , тогда функция примет вид у=x² - 6х -5.

Построим параболу и обведем ту часть , где x≥-5∕6,

6х+5<0, т.е. х < -5∕6, тогда функция принимает вид у=x² + 6х +5.

Построим эту параболу и обведем ту её часть, которая расположена левее точки с абсциссой х =-5∕6,

hello_html_5cba2e8d.png

Обведенные в обоих случаях части парабол являются графиком данной функции.

Пример 8. |y|= x 2 – 6х +5

Равенство |y|= x 2 – 6х +5 не задает функции, т. к. при

x 2 – 6х +5 >0 имеем 2 значения y, соответствующих

данному значению x, а при x 2 – 6х +5 <0, ни одного такого

значения. График данного уравнения строится так:

Отбрасываем ту часть графика , которая лежит ниже оси

Ох, а оставшуюся часть симметрично отображаем

относительно оси Ох.

hello_html_m6b78bb70.png


Увлекшись построением графиков функций, у меня возникла интересная идея. Чтобы эту идею воплотить , мне надо было придумать функции, графики которых имеют определенный вид.

1. y= -2|x|²+8, где -2≤x≤2

2. y=±|x²-6x+5|+4, где 1≤x≤5

3. y=-|x²-4x|+8, где 2-2√3 ≤ x ≤ 2+2√3

4)y=hello_html_m24a70656.gif

5)y=±|x²-6x+5|+4, где 1≤x≤4

6)x²+(|y-4|-2)²=4, где 0≤y≤8, x=0

7)x²+(|y-4|-2)²=4, где 0≤x≤2

Выводы:

1)Для построения графика функции y = |f(x)| , надо сохранить ту часть графика функции y = f(x), точки которой находятся на оси Ох или выше оси Ох, и симметрично отразить относительно оси Ох ту часть графика функции y = f(x), которая расположена ниже оси Ох.

2) Для построения графика y = f(|x|) надо сохранить ту часть графика функции y = f(|x|), точки которой на оси Оу или справа от неё и симметрично отразить эту часть графика относительно оси Оу.

3) Чтобы построить график функции |y|= x 2 – 6х +5 нужно:

Отбросить ту часть графика , которая лежит ниже оси

Ох, а оставшуюся часть симметрично отобразить

относительно оси Ох

Заключение:

И в заключение я хотела бы сказать, что для досканального изучения материала исследовательская работа подходит больше всего. Мне удалось выйти за рамки того материала по данной теме, который дается в школе. В дальнейшем я собираюсь углубить свои знания по данной теме и научиться строить графики более сложных функций. Хотелось бы еще научиться строить графики уравнений, используя различные программы для построения графиков, в том числе Microsoft Exel.







Используемая литература:
1.
Математика. Алгебра. Функции. Анализ данных. 9 кл.: М.: Учеб. для общеобразоват. учреждений / Г. В. Дорофеев, С. Б. Суворова, Е. А. Бунимович, Л. В. Кузнецова, С. С. Минаева. 2. Курс высшей математики для техникумов. И. Ф. Суворов, Москва - 1967.
3.
Математика. Алгебра и элементарные функции. М. И. Абрамович, М. Т. Стародубцев.
4.
А.Г. Мордкович Книга для учителя. Беседы с учителями. Москва – «Оникс 21 век», «Мир и образование», 2005 г.


Краткое описание документа:

 1)Дляпостроенияграфикафункции y = |f(x)| , надосохранитьтучастьграфикафункции   y = f(x), точкикоторойнаходятсянаосиОхиливышеосиОх, исимметричноотразитьотносительноосиОхтучастьграфикафункции y = f(x), котораярасположенанижеосиОх.

2) Дляпостроенияграфика  y = f(|x|) надосохранитьтучастьграфикафункции y = f(|x|), точкикоторойнаосиОуилисправаотнеёисимметричноотразитьэтучастьграфикаотносительноосиОу.

3) Чтобыпостроитьграфикфункции |y|= x  2 – 6х +5 нужно:

Отброситьтучастьграфика , котораялежитнижеоси

Ох, аоставшуюсячастьсимметричноотобразить

 

относительноосиОх

Автор
Дата добавления 15.01.2015
Раздел Математика
Подраздел Конспекты
Просмотров941
Номер материала 305637
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх