Инфоурок Физика Научные работыИндивидуальный проект "Эталоны основных физических величин"

Индивидуальный проект "Эталоны основных физических величин"

Скачать материал

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Югорский государственный университет» (ЮГУ)

НИЖНЕВАРТОВСКИЙ НЕФТЯНОЙ ТЕХНИКУМ

(филиал) федерального государственного бюджетного образовательного учреждения

Высшего образования «Югорский государственный университет»

(ННТ (филиал) ФГБОУ ВО «ЮГУ»)

 _______________________________________________________________________________________________________

 

 

 

 

 

                 ИНДИВИВИДУАЛЬНЫЙ ПРОЕКТ

                               по ОУДб10 Физика

Эталоны основных физических величин

 

                

                      ННТО. 23.02.03. 3ТОР01

 

Разработала                                Халеева Надежда Сергеевна

 

Руководитель                              Кутов Айрат Хасанович

 

 

 

                  

           

 

 

 

                                Нижневартовск 2021 г.

 

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ

1.Понятие о системе физических величин. 6

2. Шкалы величин. 9

3. Случайная погрешность. 12

4. Эталоны основных единиц СИ.. 16

ЗАКЛЮЧЕНИЕ

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

 

Метрология – наука об измерениях физических величин, методах и средствах обеспечения их единства. Основные проблемы метрологии: развитие общей теории измерений; установление единиц физических величин и их системы; разработка методов и средств измерений, а также методов определения точности измерений; обеспечение единства измерений, единообразия средств и требуемой точности измерения; установление эталонов и образцовых средств измерений; разработка методов передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений и др. Важнейшая роль в решении указанных проблем отводится государственной метрологической службе, имеющей научно-исследовательские институты и разветвленную сеть лаборатории государственного надзора и других организаций.

Цель  – рассмотреть эталоны единиц физических величин.

Важной задачей метрологии является создание эталонов физических величин, привязанных к физическим константам и имеющих диапазоны, необходимые для современной науки и техники. Стоимость поддержания мировой системы эталонов весьма велика.

В физике и технике единицы измерения (единицы физических величин, единицы величин) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного значения к некоторому стандартному значению, которое и является единицей измерения. Число с указанием единицы измерения называется именованным.
Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерения одной и той же физической величины.

1.     Физические величины.

 

Физическая величина – это характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном отношении индивидуальная для каждого объекта.

Измерением  физической  величины называют совокупность операций, выполняемых с помощью технического средства, хранящего единицу, или воспроизводящую шкалу физической величины, заключающихся в сравнении (в явном или в неявном виде) измеряемой величины с ее единицей или шкалой с целью получения значения этой величины в форме, наиболее удобной для использования.

В теории измерений принято, в основном, пять типов шкал: наименования, порядка, интервалов, отношений и абсолютная.

Практическая реализация шкал конкретных свойств достигается путем стандартизации единиц измерений, шкал и (или) способов и условий их однозначного воспроизведения. Понятие неизменной для любых точек шкалы единиц измерений имеет смысл только для шкал отношений и интервалов (разностей). В шкалах порядка можно говорить только о числах, приписанных конкретным проявлениям свойства. Говорить о том, что такие числа отличаются в такое-то число раз или на столько-то процентов, нельзя. Для шкал отношений и разностей иногда недостаточно установить только единицу измерений. Так, даже для таких величин, как время, температура, сила света (и другие световые величины), которым в Международной системе единиц (SI) соответствуют основные единицы – секунда, Кельвин и кандела, практические системы измерений опираются так же на специальные шкалы. Кроме того, сами единицы SI в ряде случает базируются на фундаментальных физических константах.

В этой связи можно выделить три вида физических величин, измерение которых осуществляется по различным правилам.

К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношение типа «мягче», «тверже», «теплее», «холоднее».

К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновения в него другого тела; температура как степень нагретости тела и т.п.

Существование таких отношений устанавливается теоретически или экспериментально с помощью специальных средств сравнения, а также на основе наблюдений за результатами воздействия физической величины на какие-либо объекты.

Для второго вида физических величин отношение порядка и эквивалентности имеет место как между размерами, так и между разностями в парах их размеров. Так, разности интервалов времени считаются равными, если расстояние между соответствующими отметками равны.

Третий вид составляют аддитивные физические величины.

Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания. К таким величинам относятся длина, масса, сила тока. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер. Например, сумма масс двух тел – это масса такого тела, которое уравновешивает на равноплечих весах первые два.

 

1.  Понятие о системе физических величин.

 

Система физических величин – это совокупность взаимосвязанных физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются функциями независимых величин. Система физических величин содержит основные физические величины, условно принятые в качестве независимых от других величин этой системы, и производные физические величины, определяемые через основные величины этой системы.

Основная физическая величина – физическая величина, входящая в систему единиц и условно принятая в качестве независимой от других величин этой системы.

Производная единица системы единиц – единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами.

Производная единица называется когерентной, если в этом уравнении числовой коэффициент принят равным единице. Соответственно, система единиц, состоящая из основных единиц и когерентных производных, называется когерентной системой единиц физических величин.

Для каждой физической величины должна быть установлена единица измерения.

Единица физической величины – физическая величин фиксированного размера, которой условно присвоено значение, равное единице, и применяемая для количественного выражения однородных физических величин.

Кроме основных и производных физических величин различают кратные, дольные, когерентные, системные и несистемные единицы.

Число независимых установленных величин равно разности числа величин, входящих в систему, и числа независимых уравнений связи между величинами.

Размерность физической величины – выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь от данной величины с физическими величинами, принятыми в данной системе величин за основные, и с коэффициентом пропорциональности, равным единице.

Показатель размерности физической величины – показатель степени, в которую возведена размерность основной физической величины, входящая в размерность производной физической величины.

Размерности широко используют при образовании производных единиц и проверки однородности уравнений. Если все показатели степени размерности равны нулю, то такая физическая величина называется безразмерной. Все относительные величины (отношения одноименных величин) являются безразмерными.

Систему единиц как совокупности основных и производных единиц впервые в 1832г. предложил немецкий ученый К. Гаусс. Он построил систему единиц, где за основу принял единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), и назвал ее абсолютной системой.

Многообразие единиц измерения физических величин и систем единиц осложняло их применение. Одни и те же уравнения между величинами имели различные коэффициенты пропорциональности. Свойства материалов, процессов выражались различными числовыми значениями. Международный комитет по мерам и весам выделил из своего состава комиссию по разработке единой Международной системы единиц. Комиссия разработала проект Международной системы единиц, который был утвержден XI Генеральной конференцией по мерам и весам в 1960 г. Принятая система была названа Международной системой единиц, сокращенно СИ.

Учитывая необходимость охвата Международной системой единиц всех областей науки и техники, в ней в качестве основных выбрать семь единиц. В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте – единица термодинамической температуры, в оптике – единица силы света, в молекулярной физике, термодинамике и химии – единица количества вещества. Эти семь единиц соответственно: метр, килограмм, секунда, ампер, Кельвин, кандела и моль – и выбраны в качестве основных единиц СИ.

Единица длины (метр) – длина пути, проходимого светом в вакууме за 1/ 299792458 долю секунды.

Единица массы (килограмм) – масса, равная массе международного прототипа килограмма.

Единица времени (секунда) – продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Единица силы электрического тока (ампер) – сила не изменяющего тока, который, проходя по двум нормальным прямолинейным проводникам бесконечной длины и ничтожно малой площади круглого поперечного сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает между проводниками силу взаимодействия, равную 2*10-7 Н на каждый метр длины.

Единица термодинамической температуры (Кельвин) – 1/273,16 термодинамической температуры тройной точки воды. Допускается использовать также шкалу Цельсия.

Единица количества вещества (моль) – количество веществ системы, содержащей столько же структурных элементов, сколько атомов содержится в углероде-12 массой 0, 012 кг.

Международная система единиц содержит также две дополнительные единицы: для плоского угла – радиан и для телесного угла – стерадиан.

Радиан (рад0 – единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении 1 рад = 570 17’44, 8”.

Стерадиан (ср) – единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

В международной системе единиц, как и в других системах единиц физических единиц, важную роль играет размерность.

Размерностью называют символическое (буквенное) обозначение зависимости производных величин (или единиц) от основных.

2. Шкалы величин

 

Исторически измерения возникли как процесс количественного сравнения оцениваемого свойства предмета с установленной мерой данного свойства. Это было естественно, так как количество оцениваемых свойств было невелико, а основные, наиболее практически востребованные из них (длина, масса, объем) допускали изготовление довольно простых, наглядных и практически удобных мер (в России: мера длины – фут, аршин, сажень; мера массы – золотник, фунт, пуд; мера объема – бутылка, ведро, бочка). Однако уже в то время были в ходу меры, не имевшие материального выражения (меры площади, меры длины большого размера – верста).

С развитием производства и товарообмена количество измеряемых свойств расширялось, многие из них не были столь наглядными, как перечисленные выше, к тому же остро стоял вопрос межгосударственной унификации мер. Как следствие, неизбежен был переход от мер к единицам физических величин. Дальнейшее развитие науки и техники поставило вопрос об измерительном контроле свойств, до недавних пор считавшихся неизменяемыми. Прежде всего, следует отметить качественные свойства. К качественным свойствам можно применять признаки дискретности, упорядоченности и др. если мы представим себе такое качественное свойство, как цвет, то вспомним, что в последнее время широко используются цветовые атласы (наборы), сопоставление с которыми позволяет четко идентифицировать и классифицировать тот или иной оттенок. К нему не применимы традиционные понятия измерений, такие, как больше или меньше, однако можно найти порядок расположения цветов (цветовая гамма) и выстроить шкалу наименований. Подобный подход позволяет сделать вывод о наличии еще более общих признаков, чем единицы измерений, - шкал измерений и распространить понятия и подходы метрологии на практически все многообразие предметов, процессов, явлений – на весь окружающий нас мир.

В настоящее время в соответствии с логической структурой проявления свойств в теории измерений принято различать пять типов шкал измерений:

                    шкала наименований (классификаций);

                    шкала порядков (рангов);

                    шкала разностей (интервалов);

                    шкала отношений;

Шкала наименований – шкала, элементы (ступени) которой характеризуются только соотношениями эквивалентности (совпадения, равенства и сходства) конкретных качественных проявлений свойств (например, атлас цветов).

В шкалах наименований принципиально невозможно ввести единицы измерений и нулевой элемент (нулевую точку шкалы). Это чисто качественные шкалы. Они допускают проведение некоторых статистических операций при обработке результатов измерений, полученных с их помощью. Для создания шкалы наименований нет необходимости в эталонах, но если эталон шкалы наименований создан, то он воспроизводит весь применяемый на практике участок шкалы.

Шкала порядка (ранга) – шкала, элементы которой допускают логическую взаимосвязь элементов не только в виде отношений эквивалентности (как у шкал наименований), но и отношений порядка по возрастанию или убыванию количественного проявления измеряемого свойства (например, шкалы чисел твердости, баллов землетрясений, и силы ветра).

У шкал порядка (ранга) есть предпосылка для введения единицы измерения, но этого не удается сделать ввиду их абсолютной нелинейности. Также, как и для шкал наименований, для шкал порядка наличие эталонов не является необходимым. В них может быть или может отсутствовать нулевой элемент. Внесение любого изменения в шкалы наименований и порядка невозможно, так как это фактически обозначает создание новой шкалы.

Шкалы разностей (интервалов) – шкала, допускающая дополнительно к соотношениям эквивалентности и порядка суммирования интервалов (разностей) между различными количественными проявлениями свойств (например, шкалы времени, температуры Цельсия).

Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и нулевые элементы, соответствующие характерным (реперным) значениям измеряемой величины. В этих шкалах допустимы линейные преобразования и процедуры статистической обработки результатов измерений.

Шкалы отношений – шкалы, к множеству количественных проявлений, которых применимы соотношения эквивалентности и порядка – операции вычитания и умножения (шкалы отношений первого рода – пропорциональные шкалы) и суммирования (шкалы отношений второго рода – аддитивные шкалы).

В шкалах отношений используются условные (принятые по соглашению) единицы измерений и естественные нули (например, шкала термодинамической температуры (шкала первого рода); шкала массы (шкала второго рода)). Шкалы отношений допускают все арифметические и статистические операции.

Абсолютные шкалы – шкалы, обладающие всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерений. Такие шкалы используются для измерений относительных величин, таких, как, например, коэффициент полезного действия. Абсолютные шкалы могут опираться на эталоны, воспроизводящие любые их участки, но могут быть построены и без эталонов.

3. Случайная погрешность

О природе случайных погрешностей, их источниках и путях возникновения известно мало, можно лишь сказать, что существует много причин, вызывающих появление эти погрешностей. Каждая из них незаметно воздействует на результат воздействия, но суммарное их воздействие может вызывать заметные погрешности. В каждый данный момент эти причины проявляют себя по-разному, без закономерной связи между собой, независимо друг от друга. Как следствие, заметные погрешности появляются без закономерной связи с предыдущими и последующими погрешностями.

Теория вероятностей разрабатывает математические методы изучения свойств случайных событий в больших совокупностях. Теория погрешностей, использующая математический аппарат теории вероятностей, основывается на аналогии между появлением случайных погрешностей при многократно повторяемых измерениях и совершением случайных событий. Недостаточное значение природы и происхождения случайных погрешностей не в коей мере не ограничивает эффективность применения вероятностных методов.

Случайной называют такую величину, которая в результате опыта может применять то или иное значение, неизвестно заранее – какое именно. Случайные величины, принимающие только отдельные друг от друга значения, которые можно заранее перечислить, называются прерывными, или дискретными, случайными величинами. Такими величинами являются, например, возможное число очков при бросании кости, возможное число попаданий при ста выстрелах, возможное число горошин в одном килограмме. Величины, возможные значения которых не отделены друг от друга и непрерывно заполняют некоторый промежуток, называются непрерывными 

случайными величинами. Промежуток, который заполняют подобные величины, может иметь как резко выраженные границы, так и границы неопределенные, расплывчатые. Непрерывными случайными величинами являются длина отрезка линии, промежуток времени, интервал температуры.

Факторы, определяющие возникновение случайных погрешностей, проявляются нерегулярно, в различных комбинациях и с интенсивностью, которую трудно предвидеть. Случайная погрешность случайно изменяется при повторных измерениях одной и той же физической величины. Однако, если оперировать исправленными результатами измерений, т.е. такими, из которых исключены систематические погрешности, то чисто случайные погрешности будут обладать следующими свойствами:

                     Равные по абсолютной величине положительные и

отрицательные погрешности равновероятны;

                     Большие погрешности наблюдаются реже, чем малые;

                    С увеличением числа измерений одной и той же величины среднее арифметическое погрешностей стремится к нулю, и, следовательно, среднее арифметическое результатов измерений стремится к истинному значению измеряемой величины.

Фактическое значение случайной погрешности, полученное при поверке средства измерения, не характеризуют его точности. Для оценки интервалов значений погрешностей и вероятности появления определенных значений необходимы многократные измерения и использование математического аппарата теории вероятностей.

Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения.

Интегральной функцией распределения F(x) называют функцию, значение которой для каждого х является вероятностью появления значений хi (в i-м наблюдении), меньших х:

F ( x )= P { xi ≤ x }= P {-

где Р – символ вероятности события, описание которого заключено в фигурных скобках.

         Основные понятия об эталонах

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Это достигается путем точного воспроизведения и хранения единиц физических величин и передачи их размеров стоящим ниже поверочной схеме средством измерений с помощью эталонов.

Перечень эталонов не повторяет перечня физических величин. Некоторые величины воспроизводятся с наивысшей точностью путем косвенных измерений, т.е. путем использования эталонов единиц других величин, связанных с первой определенной зависимостью.

По своему назначению и предъявляемым требованиям различают следующие виды эталонов.

Первичный эталон – обеспечивает воспроизведение и хранение единицы физической величины с наивысшей в стране (по сравнению с другими эталонами той же величины) точностью. Первичные эталоны – уникальные измерительные комплексы, созданные с учетом новейших достижений науки и техники и обеспечивающие единства измерений в стране.

Специальный эталон - обеспечивает воспроизведение единицы физической величины в особых условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью не осуществима, и служит для этих условий первичным эталоном.

Первичный или специальный эталон, официально утвержденный в качестве исходного для страны, называется государственным. Государственные эталоны утверждаются Госстандартом, и на каждый их них утверждается государственный стандарт. Государственные эталоны создаются, хранятся и применяются центральными научными метрологическими институтами страны. 

Вторичный эталон – хранит размеры единицы физической величины, полученной путем сличения с первичным эталоном соответствующей физической величины. Вторичные эталоны относятся к подчиненным средствам хранения единиц и передачи их размеров при проведении поверочных работ и обеспечивают сохранность и наименьший износ государственных первичных эталонов.

По своему метрологическому назначению вторичные эталоны подразделяются на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.

Эталон-копия  предназначен для передачи размера единицы физической величины рабочим эталоном при большом объеме поверочных работ. Он является копией государственного первичного эталона только по метрологическому назначению, но не всегда является физической копией.

Эталон сравнения – применяется для сличения эталонов, которые по тем или иным причинам не могут непосредственно сличаться друг с другом.

Эталон-свидетель – предназначен для проверки сохранности и неизменности государственного эталона и замены его в случае порчи или утраты. Поскольку большинство государственных эталонов создано на основе использования наиболее устойчивых физических явлений и являются поэтому не разрушаемыми, в настоящее время только эталон килограмма имеет эталон-свидетеля.

Рабочий эталон – применяется для передачи размера единицы физической величины рабочим средством измерения. Это самый распространенный вид эталонов, которые используются для проведения поверочных работ территориальными и ведомственными метрологическими службами. Рабочие эталоны подразделяются на разряды, определяющие порядок их соподчинения в соответствии с поверочной схемой.

4. Эталоны основных единиц СИ

 

Эталон единицы времени. Единицу времени – секунду – долгое время определяли как 1/86400 часть средних солнечных суток. Позднее обнаружили, что вращение Земли вокруг соей оси происходит неравномерно. Тогда в основу определения единицы времени положили период вращения Земли вокруг Солнца – тропический год, т.е. интервал времени между двумя весенними равноденствиями, следующими одно за другим. Размер секунды был определен как 1/31556925,9747 часть тропического года. Это позволило почти в 1000 раз повысить точность определения единицы времени. Однако в 1967 году 13-я Генеральная конференция по мерам и весам приняла новое определение секунды как интервала времени, в течении которого совершается 9192631770 колебаний, соответствующих резонансной частоте энергетического перехода между уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения внешними полями. Данное определение реализуется с помощью цезиевых реперов частоты.

В 1972 году осуществлен переход на систему всемирного координированного времени. Начиная с 1997 года, государственный первичный контроль и государственная поверочная схема для средств измерения времени и частоты определяются правилами межгосударственной стандартизации ПМГ18-96 «Межгосударственная поверочная схема для средств измерения времени и частоты».

Государственный первичный эталон единицы времени, состоящий из комплекса измерительных средств, обеспечивает воспроизведение единиц времени со средним квадратическим отклонением результата измерений, не превышающим 1*10-14 за три месяца.

Эталон единицы длины. В1889 году метр был принят равным расстоянию между двумя штрихами, нанесенными на металлическом стержне Х-образного поперечного сечения. Хотя международный и национальные эталоны метра были изготовлены из сплава платины и иридия, отличающегося значительной твердостью и большим сопротивлением окислению, однако не было полной уверенности в том, что длина эталона с течением времени не изменится. Кроме того, погрешность сличения между собой платиноиридиевых штриховых метров составляет + 1,1*10-7 м (+0,11 мкм), а так как штрихи имеют значительную ширину, существенно повысить точность этого сличения нельзя.

      В 1960 году 11-я Генеральная конференция по мерам и весам приняла выражение размера метра в длинах этих волн как наиболее точное его значение.

Криптоновый метр позволил на порядок повысить точность воспроизведения единицы длины. Однако дальнейшее исследование позволило получить более точный эталон метра, основанный на длине волны в вакууме монохроматического излучения, генерируемого стабилизированным лазером. Разработка новых эталонных комплексов по воспроизведению метра привела к определению метра как расстояния, которое проходит свет в вакууме за 1/299792458 долю секунды. Данное определение метра закреплено законодательно в 1985 году.

Эталон единицы массы. При установлении метрической системы мер в качестве единицы времени приняли массу одного кубического дециметра чистой воды при температуре ее наибольшей плотности (40 С).

В этот период были проведены точные определения массы известного объема воды путем последовательного взвешивания в воздухе и воде пустого бронзового цилиндра, размеры которого были тщательно определены.

Изготовленный на основе этих взвешиваний первый прототип килограмма представлял собой платиновую цилиндрическую гирю высотой 39 мм, равной ее диаметру. Как и прототип метра, он был передан на хранение в Национальный архив Франции. В 19 веке повторно осуществили несколько тщательных измерений массы одного кубического дециметра чистой воды при температуре 40 С. При этом было установлено, что эта масса немного (приблизительно на 0, 028г) меньше прототипа килограмма Архива. Для того, чтобы при дальнейших, более точных, взвешиваниях не менять значение исходной единицы массы, Международной комиссией по прототипам метрической системы в 1872г. было решено за единицу массы принять массу прототипа килограмма Архива.

При изготовлении платиноиридиевых эталонов килограмма за международной прототип был принят тот, масса которого меньше всего отличалась от массы прототипа килограмма Архива.

В связи с принятием условного прототипа единицы массы литр оказался не равным кубическому дециметру. Значение этого отклонения (1л=1, 000028 дм3) соответствует разности между массой международного прототипа килограмма и массой кубического дециметра воды. В 1964 году 12-я Генеральная конференция по мерам и весам приняла решение о приравнивании объема 1 л к 1дм3.

Четкое разграничение килограмма как единицы массы и килограмма как единицы силы было дано в решениях 3-й Генеральной конференции по мерам и весам (1901г).

Эталоны единицы температуры. Измерение температуры с момента изобретения термометра Галилеем в 1598 году основывалось на применении того или иного термометрического вещества, изменяющего свой объем или давление при изменении температуры.

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

             

Были  рассмотрены следующие вопросы:

    виды эталонов единиц физических величин;

    понятие единицы физической величины;

    основные положения ГОСТ 8.057-80 ГСИ.

Множественность единиц измерения являлась серьезным препятствием для дальнейшего развития науки и роста материального производства; отсутствие единства в понимании, определении и обозначении физических величин усложняло международные торговые связи, тормозило научно-технический прогресс в целом. Все это вызвало необходимость строгой унификации единиц и разработки удобной для широкого использования систем единиц физических величин.

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

                    Кузнецов В.А., Ялунина Г.В. Основы метрологии. Учебное пособие. – М.: Изд. Стандартов, 2016.

                    Основы метрологии, стандартизации и контроля качества: Учебное пособие. – М.: Изд. Стандартов, 2016.

                    Лифиц И.М. Стандартизация, метрология и подтверждение соответствия: учебник. 9-е изд., перераб. и доп. – М.: Издательство Юрайт,2016.

                    СТ 8.057-80. Эталоны единиц физических величин. Основные положения = State system for ensuring the uniformity of measurements. Standards of the unit for physical quantities. General principles. – Переизд. 2016- Взамен ГОСТ 8.057-73; Введ.01.01.81.-М.: Государственный комитет СССР по стандартам, 2016. – 6 с.

                    Сергеев А.Г., Крохин В.В. Метрология: Учебное пособие для вузов. – М.; Логос, 2001. Сена Л.А. «Единицы физических величин и их размерности», издательство «Наука». Главная редакция физико-математической литературы, Москва 2016.

                    Бурдун Г.Д., Калашников Н.В., Стоцкий Л.Р. «Международная система единиц», издательство «Высшая школа», Москва 2016.

                    Рабинович С.Г. Погрешности измерений. [Текст] / С.Г. Рабинович - Л.: Энергия, 2016. - 112 с.

                    Новосильцев В.Н. «К истории основных единиц СИ», издательство Ростовского Государственного университета, г. Ростов-на-Дону 2016

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Индивидуальный проект "Эталоны основных физических величин""

Настоящий материал опубликован пользователем Кутов Айрат Хасанович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Скачать материал
    • 15.05.2021 6479
    • DOCX 33.5 кбайт
    • 34 скачивания
    • Оцените материал:
  • Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Кутов Айрат Хасанович
    Кутов Айрат Хасанович

    Преподаватель

    • На сайте: 9 лет и 8 месяцев
    • Подписчики: 0
    • Всего просмотров: 90478
    • Всего материалов: 41

    Об авторе

    Категория/ученая степень: Высшая категория
    Место работы: НефтИн (филиал) ФГБОУ ВО «Югорский государственный университет»
    Закончил Стерлитамакский госпединститут, по специальности физика и математика в 1995 году, в 1998 году закончил Башкирский госаграруниверситет по специальности экономика и управление аграрным производством. Работал учителем физики, зам.директора по УР в Кургашлинской средней школе, преподавателем физики, зав.дневным отделением в техникуме бизнеса и права, в настоящее время преподаватель физики в нефтяном техникуме.

Физические величины. Измерение физических величин.

Файл будет скачан в форматах:

  • pdf
  • docx
3227
19
01.06.2023
«Инфоурок»
Скачать: Физические величины. Измерение физических величин.
Смотреть ещё 5 615 курсов

Методические разработки к Вашему уроку:

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

7 240 676 материалов в базе

Скачать материал

Другие материалы

План – конспект открытого интегрированного урока по физике и биологии для учащихся 10 классов Тема Капиллярные явления
  • Учебник: «Физика (базовый уровень)», Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. / Под ред. Парфентьевой Н.А.
  • Тема: Глава 11. Взаимные превращения жидкостей и газов
  • 15.05.2021
  • 439
  • 15
«Физика (базовый уровень)», Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. / Под ред. Парфентьевой Н.А.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Оформите подписку «Инфоурок.Маркетплейс»

Вам будут доступны для скачивания все 218 568 материалов из нашего маркетплейса.

Мини-курс

Нейропсихология в школе: путь к успеху и благополучию детей

6 ч.

699 руб.
Подать заявку О курсе
  • Сейчас обучается 121 человек из 33 регионов
  • Этот курс уже прошли 183 человека

Мини-курс

Финансовое руководство: от планирования до успеха

5 ч.

699 руб.
Подать заявку О курсе
  • Сейчас обучается 34 человека из 20 регионов
  • Этот курс уже прошли 27 человек

Мини-курс

Методы сохранения баланса в жизни

2 ч.

699 руб.
Подать заявку О курсе
  • Сейчас обучается 31 человек из 17 регионов
  • Этот курс уже прошли 41 человек
Смотреть ещё 5 615 курсов