Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Технология / Другие методич. материалы / Информационный проект по технологии "Пластмассы"

Информационный проект по технологии "Пластмассы"


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Технология

Поделитесь материалом с коллегами:



МОУ Владимировская СОШ









Проектная работа по технологии

Тема:

«Пластмассы»















Выполнил: ученик 9 класса

МОУ Владимировская СОШ

Шелест Алексей

Руководитель: учитель технологии

МОУ Владимировская СОШ

Варламов Михаил Николаевич





Владимировка 2016 год.



1 Оглавление.



Введение…………………………………………………………………………. 3

1.Теоретические сведения о пластмассах.

1.1.Что такое пластмассы…………………………………………………….... 4

1.2.Свойства пластмасс………………………………………………………... 5

1.3.Разновидности пластмасс…………………………………………………. 6

1.4.Объём производства пластмассовых изделий…………………………… 7

1.5.Структура потребления пластмассовых изделий………………………. 8

2.Практическое применение пластмасс

2.1. Получение пластмасс……………………………………………………… 9

2.2. Применение пластмассовых изделий. ………………………………….. 10

2.3.Наполнение пластики………………………………………………… 11-12

Заключение……………………………………………………………………... 13

Список использованной литературы……………………………………….. 14

Интернет-ресурсы…………………………………………………………….. 15























2

Введение.



Я прочитал параграф о пластмассах в учебнике технологии 9 класс (В.Д.Симоненко) и решил изучить эту тему более подробно. Для этого я поставил следующую цель:

Изучить разновидности пластмасс и их применение.



Задачи

1)Узнать, что такое пластмассы, и какими свойствами они обладают.

2)Определить, где применяют пластмассы.

3)Изучить, как можно получить пластмассы.

В ходе этой работы я собираюсь получить как можно полезной информации о пластмассах и узнать насколько эта отрасль важна в промышленности.

























3



Что такое пластмассы.



Пластические массы, пластмассы, пластики - материалы, содержащие в своём составе полимер, который в период формования изделий находится в вязко-текучем или высокоэластичном состоянии, а при эксплуатации — в стеклообразном или кристаллическом состоянии. В зависимости от характера процессов, сопутствующих формованию изделий, Пластмассы делят на реактопласты и термопласты. К числу реактопластов относят материалы, переработка в изделия которых сопровождается химической реакцией образования сетчатого полимера — отверждением; при этом пластик необратимо утрачивает способность переходить в вязко-текучее состояние (раствор или расплав). При формовании изделий из термопластов не происходит отверждения, и материал в изделии сохраняет способность вновь переходить в вязко-текучее состояние.

Пластмассы обычно состоят из нескольких взаимно совмещающихся и несовмещающихся компонентов. При этом, помимо полимера, в состав пластмассы могут входить наполнители полимерных материалов, пластификаторы, понижающие температуру текучести и вязкость полимера, стабилизаторы полимерных материалов, замедляющие его старение, красители и др. Пластмассы могут быть однофазными (гомогенными) или многофазными (гетерогенными, композиционными) материалами. В гомогенных пластмассах полимер является основным компонентом, определяющим свойства материала. Остальные компоненты растворены в полимере и способны улучшать те или иные его свойства. В гетерогенных пластмассах  полимер выполняет функцию дисперсионной среды (связующего) по отношению к диспергированным в нём компонентам, составляющим самостоятельные фазы. Для распределения внешнего воздействия на компоненты гетерогенного пластика необходимо обеспечить прочное сцепление на границе контакта связующего с частицами наполнителя, достигаемое адсорбцией или химической реакцией связующего с поверхностью наполнителя.









4

Свойства пластмасс.



Основные компоненты

 

Плот-ность, г/см3

Термо-стойкость, ° С

Твердость, Мн/м2 (кгс/мм2)

Модуль упру-гости при рас-тяжении, Гн/м2 (кгс/мм2)

Ударная вязкость, кдж/м2

Разрушающее напряжение, Мн/м2 (кгс/мм2)

полимер

наполнитель

при разрыве

при сжатии

при изгибе


Полиэтилен

0,945

60—80

45—60 (4,5—6,0)

0,4—0,55

(40—55)

Не разру-шается

20—40

(2—4)

40—80

(4—8)

20—30 (2—3)

Поливинил-хлорид

1,38

60—70

130—160 (13—16)

3—4

(300—400)

100—120

40—60

(4—6)

80—120

(8—12)

80—120 (8—12)

Полистирол

1,047

75—85

140—150 (14—15)

3—4

(300—400)

10—15

35—40 (3,5—4)

80—110

(8—11)

80—90 (8—9)

Полистирол

Эластомер

1,03

70—80

110—120 (11—12)

1,8—2,5

(180—250)

25—35

27—30 (2,7—3)

40—50 (4—5)

Полистирол

Стекловолокно (l = 2—4 мм; 30% по массе)

1,4

100—110

180—190 (18—19)

6,8—8

(680—800)

17—20

70—80

(7—8)

100—120 (10—12)









5

Разновидности пластмасс.

По происхождению полимеры  делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры., например каучук натуральный); цепи с разветвлением (разветвленные полимеры., например амилопектин); трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).

Полимеры, макромолекулы которых содержат несколько типов моно-мерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блок-сополимерами. К внутренним (не концевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. - полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы не органогенных элементов, называются элементоорганическими .

6

Объём производства пластмассовых изделий.



Производство пластических масс  в 1973 в некоторых капиталистических промышленно развитых странах характеризуется следующими данными (в тыс. т): США — 13200, Япония — 6500, ФРГ — 6500, Франция — 2500, Италия — 2300, Великобритания — 1900.

В 1973 мировое производство полимеров для пластических масс  достигло ~ 43 млн. т. Из них около 75% приходилось на долю термопластов (25% полиэтилена, 20% поливинилхлорида, 14% полистирола и его производных, 16% прочих пластиков). Существует тенденция к дальнейшему увеличению доли термопластов (в основном полиэтилена) в общем производстве пластмасс.

Хотя доля термореактивных смол в общем выпуске полимеров для пластмасс  составляет всего около 25%, фактически объём производства реактопластов выше, чем термопластов, из-за высокой степени наполнения (60—80%) смолы.

В СССР становление промышленности  пластических масс,  как самостоятельной отрасли относится к периоду довоенных пятилеток (1929—40). Производство пластмасс составило (в тыс. т): в 1940 — 24, в 1950 — 75, в 1960 — 312, в 1970 — 1673, в 1973 — около 2300. Основные предприятия сосредоточены в Европейской части (84% общесоюзного производства пластических масс ). К их числу относятся орехово-зуевский завод «Карболит», Казанский завод органического синтеза, Полоцкий химический комбинат, Свердловский завод пластмасс, Владимирский химический завод, Горловский химический комбинат, Московский нефтеперерабатывающий завод. В перспективе в связи с созданием крупнейших Томского и Тобольского нефтехимических комплексов на базе Тюменских нефтяных месторождений, развитием Омского нефтехимического комплекса и соответствующих заводов пластмасс около 30% их производства будет приходиться на восточные районы. Основные действующие предприятия в этих районах — кемеровский завод «Карболит», Тюменский завод пластмасс.











7

Структура потребления пластмассовых изделий.



Потребление пластмасс  в строительстве непрерывно возрастает. При увеличении мирового производства пластических масс  в 1960—70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества пластмасс  перед др. строительными материалами — лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко пластмассы  (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ (см. также Полимербетон), герметизации, гидро- и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования. Их применяют и в виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч. светопрозрачных), оконных переплётов, дверей, пневматических строительных конструкций, домиков для туристов, летних павильонов и др.

Пластмассы занимают одно из ведущих мест среди конструкционных материалов машиностроения. Потребление их в этой отрасли становится соизмеримым (в единицах объёма) с потреблением стали. Целесообразность использования Пластмассы в машиностроении определяется прежде всего возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин — уменьшается масса, повышаются долговечность, надёжность и др. Из пластмасс  изготовляют зубчатые и червячные колёса, шкивы, подшипники, ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент технологической оснастки и др.













8

Получение пластмасс.



Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры  обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С º N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).































9

Применение пластмассовых изделий.



Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка. Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. "Истинные" синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров  был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию полимера. (до сих пор полимеры  часто называли "смолами"). Первые упоминания о синтетических полимерах  относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).





















10

Наполнение пластики.



Наполнитель в пластмассе  может быть в газовой или конденсированной фазах. В последнем случае его модуль упругости может быть ниже (низкомодульные наполнители) или выше (высокомодульные наполнители) модуля упругости связующего.

К числу газонаполненных пластиков относятся пенопласты — материалы наиболее лёгкие из всех пластмасс; их кажущаяся плотность составляет обычно от 0,02 до 0,8 г/см3.

Низкомодульные наполнители (их иногда называют эластификаторами), в качестве которых используют эластомеры, не понижая теплостойкости и твёрдости полимера, придают материалу повышенную устойчивость к знакопеременным и ударным нагрузкам (см. табл. 1), предотвращают прорастание микротрещин в связующем. Однако коэффициент термического расширения эластифицированных пластмасс выше, а деформационная устойчивость ниже, чем монолитных связующих. Эластификатор диспергируют в связующем в виде частиц размером 0,2—10 мкм. Это достигается полимеризацией мономера на поверхности частиц синтетических латексов, отверждением олигомера, в котором диспергирован эластомер, механическим перетиранием смеси жёсткого полимера с эластомером. Наполнение должно сопровождаться образованием сополимера на границе раздела частиц эластификатора со связующим. Это обеспечивает кооперативную реакцию связующего и эластификатора на внешнее воздействие в условиях эксплуатации материала. Чем выше модуль упругости наполнителя и степень наполнения им материала, тем выше деформационная устойчивость наполненного пластика. Однако введение высокомодульных наполнителей в большинстве случаев способствует возникновению остаточных напряжений в связующем, а следовательно, понижению прочности и монолитности полимерной фазы.

Свойства пластмассы с твёрдым наполнителем определяются степенью наполнения, типом наполнителя и связующего, прочностью сцепления на границе контакта, толщиной пограничного слоя, формой, размером и взаимным расположением частиц наполнителя. Пластмассы с частицами наполнителя малых размеров, равномерно распределёнными по материалу, характеризуются изотропией свойств, оптимум которых достигается при степени наполнения, обеспечивающей адсорбцию всего объёма связующего поверхностью частиц наполнителя. При повышении температуры и давления часть связующего десорбируется с поверхности наполнителя, благодаря чему материал можно формовать в изделия сложных форм с хрупкими армирующими элементами. Мелкие частицы наполнителя в зависимости от их природы до различных пределов повышают модуль упругости изделия, его твёрдость, прочность, придают ему фрикционные, антифрикционные, теплоизоляционные, теплопроводящие или электропроводящие свойства.

Для получения пластмассы низкой плотности применяют наполнители в виде полых частиц. Такие материалы (иногда называемые синтактическими пенами), кроме того, обладают хорошими звуко- и теплоизоляционными свойствами.

В изделиях несложных форм, и особенно в полых телах вращения, волокна-наполнители расположены по направлению действия внешних сил. Прочность таких пластмасс в заданном направлении определяется в основном прочностью волокон; связующее лишь фиксирует форму изделия и равномерно распределяет нагрузку по волокнам. Модуль упругости и прочность при растяжении изделия вдоль расположения волокон достигают очень высоких значений (см. табл. 1). Эти показатели зависят от степени наполнения пластмассы.

Для панельных конструкций удобно использовать слоистые пластики с наполнителем из древесного шпона или бумаги, в том числе бумаги из синтетического волокна (см. Древесные пластики, Гетинакс). Значительное снижение массы панелей при сохранении жёсткости достигается применением материалов трёхслойной, или сэндвичевой, конструкции с промежуточным слоем из пенопласта или сотопласта.

























12

Заключение.



Считаю, свою работу завершенной, так как все задачи выполнены, а цели достигнуты.

Материал моего проекта также может быть использован для проведения уроков технологии, химии, и физики.

Далее также планирую продолжать собирать информацию о пластмассах и использовать её для улучшения знаний.

Спасибо за внимание!!!





































13

Список использованной литературы.





Энциклопедия полимеров, т. 1-2, М., 1972-74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л.,

Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б.,

Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В.,

Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л.,

Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж.,

Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А.,

Физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч.

Физическая химия полимеров, пер. с англ., М., 1965.



























14

Интернет-ресурсы.



http://www.rubricon.com.











































15


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 18.10.2016
Раздел Технология
Подраздел Другие методич. материалы
Просмотров28
Номер материала ДБ-270093
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх