Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Интегрированный урок алгебра и физика
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Интегрированный урок алгебра и физика

библиотека
материалов

План-конспект интегрированного урока физики и математики по теме «Гармонические колебания».


Математика есть наиболее истое и

непосредственное переживание истины.

(М.Лауэ.)

Задачи урока: Сформировать знания у школьников о гармоническом колебании, о его частоте, амплитуде, периоде, фазе. Используя основные понятия темы, познакомить учащихся с простыми дифференциальными уравнениями. Ознакомить учащихся с математическим выводом уравнения гармонических колебаний, а также с уравнениями скорости и ускорении при гармонических колебаниях. Научить определять разность фаз для двух колебаний. Продолжить формирование умения наблюдать, рассуждать, сравнивать, делать выводы, выделять главное в изучаемом материале на основе сравнения уравнений координаты, скорости и ускорения, записанных с помощью закона синуса или косинуса. С целью формирования материальной картины мира показать общность колебательного движения для разных видов материи. Раскрыть тесную взаимосвязь физики и математики, представить математику как основной метод изучения физики.


План урока:


  1. Организационный момент (1 мин.).

  2. Обоснование темы (1 мин.).

  3. Объяснение нового материала (14 мин.)

  4. Закрепление материала (10 мин)

  5. Физкультминутка (3 мин.).

  6. Тест-контроль (10 мин.).

  7. Домашнее задание (1 мин.).


Ход урока:


  1. Организационный момент.

Приветствие класса.

Проверка готовности учащихся к уроку.

  1. Обоснование темы.

У.ф.: Что такое математика? В школе бытует определение математики как науки о величинах, числах и вычислениях. Но математика – это, прежде всего, способ познания мира. Естественные науки в настоящее время тесно переплелись, зачастую их сложно разграничить. Методы одной науки проникают в другие. Ни одно современное открытие не происходит без использования математических закономерностей. В каждой теме физики нам встречаются математические уравнения и понятия, а сегодняшняя тема наиболее тесно связана с математикой. Поэтому мы сегодня проводим совместный урок физики и математики. Для урока нам понадобится повторить тему «Гармонические колебания».

  • На доске приведено несколько математических выражений. Найдите производную этих выражений.


А сейчас рассмотрим физические процессы, которые описываются этими уравнениями.

3. Объяснение нового материала.

Демонстрационный эксперимент.


Оборудование: шарик на длинной нити, груз на пружине.


? Мы начинаем изучать колебательное движение (привести в колебательное движение маятники). Какой признак является наиболее характерным для всех этих движений?

- Движения тел повторяются: тела движутся то в одну, то в другую сторону.

Все эти тела совершают периодически повторяющиеся движения около среднего положения, колеблются.

? Часто ли мы встречаемся с колебательным движением?

- Это одно из самых распространенных движений. Колеблются мосты, когда по ним проезжают поезда; голосовые связки, когда мы говорим. Тепловое движение молекул твердых кристаллических тел тоже колебательное. Иногда колебания полезны и тогда их используют дл практических целей, иногда – вредны, и тогда принимают меры для их уменьшения и устранения.

Когда мы закончим изучать механические колебания, то перейдем к электромагнитным колебаниям, которые используются в радиотехнике и телевидении. При изучении оптики вы узнаете, что свет это тоже электромагнитные колебания. Механические и электромагнитные колебания описываются одними и теми же уравнениями, хотя имеют абсолютно разную природу. Это обстоятельство еще раз указывает на единство материального мира.

С колебаниями вы уже встречались в курсе физики 9 класса и с основными характеристиками колебательного движения уже знакомы.

? Вспомните основные характеристики колебательного движения.

- Амплитуда, период и частота колебаний.

? Что такое амплитуда колебаний? Какой буквой она обозначается, в каких единицах измеряется?

- Это максимальное отклонение тела от точки равновесия. Обозначается Хм, измеряется в м.


? Дайте определение периоду колебаний. Какой буквой он обозначается, в каких единицах измеряется?

- Это время одного полного колебания. Обозначается буквой Т, измеряется в секундах.

? Что такое частота колебаний? Какой буквой она обозначается, в каких единицах измеряется?

- Это число колебаний в единицу времени. Обозначается буквой υ, измеряется в герцах или секундах в минус первой степени.

? Как взаимосвязаны период и частота колебаний?

- Это величины обратные.

Т=1/ν.

Для усвоения новой темы нам нужно вспомнить определение и формул для угловой скорости.

- Угловая скорость показывает угол, пройденный телом в единицу времени. ω= φ/t. За какое время тело делает один полный оборот по окружности? За период колебания ω= 2π/Т или ω= 2πν.


? Каковы основные физические характеристики любого механического движения?

- Координата, скорость и ускорение.

- Эти величины являются главными и для колебательного движения. Запишите формулы для указанных величин на доске.

Учитель математики:

Рассмотрим взаимосвязь координаты, скорости и ускорения с математической точки зрения.

? Каков физически смысл производной?

- Производная является мгновенной скоростью.

Производную от производной функции называют второй производной. Например, производной от скорости является ускорение, следовательно ускорение – это вторая производная от координаты. Вторую производную от любой произвольной функции обозначают f׳׳. А производную от координаты мы будем обозначать х ׳׳. Сегодняшняя тема связана с функциями cos и sin , поэтому рассмотрим sin׳ х = cos х, sin׳ ׳ х = cos׳ х = - sin х;

сos׳ х = - sin х, cos׳ ׳ х = - sin׳ х = - cos х.

Анализируя эти формулы, можно сделать вывод, что вторые производные гармонических функций отличаются от самих функций только знаком.

f׳׳(t)= - f(t).

В физике используется уравнение f׳׳(t)=-ω²f(t).

Покажем, что физическая величина, изменяющаяся во времени по уравнению f׳׳(t)=-ω²f(t) совершает гармоническое колебание.

Демонстрация таблицы «Движение тела по окружности».

Пусть точка М движется равномерно по окружности радиусом R=A с угловой скоростью ω, причем в начальный момент времени t=0 вектор ОМ составляет угол φ с положительным направлением оси абсцисс. Рассмотрим две следующие функции от t - координаты проекции точки на оси абсцисс и ординат – функции х(t) и у(t).

В момент времени t вектор ОМ составляет с положительным направлением оси ох угол φ(t), при этом φ(t) = φ+ ω t по закону равномерного движения по окружности. По определению функции cos и sin имеем:

Х(t)= А cos φ(t) или х(t)= А cost+ φ)

У(t)= А sin φ(t); у(t) = А sint+ φ).

При этом точки максимума функции х(t) – это те моменты времени, когда точка занимает крайнее правое положение; точка минимума – крайнее левое положение, нули – верхнее и нижнее положение.

Движение точки по окружности как частный случай колебательного движения происходит по законам sin и cos. А функции, приведенные на доске, называются уравнениями гармонического колебания. А уравнение вида f׳׳(t)=-ω²f(t) называются дифференциальными уравнениями гармонического колебания.

Учитель физики:

? Используя уравнения для координаты, выведите формулы для скорости и ускорения.

- Скорость есть первая производная от координаты. Ускорение равно производной от скорости, а значит второй производной для координаты.

υ = ωХм cos ω t.

а = υ ׳, а = х ׳ ׳

а= - ω²Хм sin ω∙t.

? Какое самое большое значение может принять скорость и ускорение?

- Максимальное ускорение равно -ω²Хм. Максимальная скорость ωХм.

? Какой смысл имеет знак «минус»?

- Ускорение всегда имеет направление, противоположное смещению.

Основные выводы:

  1. Координата колеблющегося тела, его скорость и ускорение изменяются в зависимости от времени по законам синуса или косинуса.

  2. Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими.

  3. Когда тело совершает гармонические колебания, то ускорение прямопропорционально смещению и направлено к положению равновесия.

  4. Основные характеристики механического движения (координата, скорость, ускорение) связаны между собой дифференциальными соотношениями.

4. Закрепление материала. Обратите внимание на то, что каждая задача состоит из двух частей: физической и математической.

Задача 1. Движение колеблющегося тела задано уравнением х = 3 cos (2t + π). Определите амплитуду, циклическую частоту и период колебаний. Какую координату будет иметь тело через время π/2? Проверьте, что уравнение для координаты является решением уравнения х ׳ ׳ = -4х.

Задача 2. Тело колеблется вдоль оси ох по гармоническому закону. Найти амплитуду колебаний, если модуль максимального ускорения равен 4 м/с², а период колебания – π.

5. Физкультминутка.

1. Принимаем положение равновесия.

2. Выполняем повороты головы вправо и влево на угол π/2 от точки равновесия.

3. Выполняем наклоны головы по вертикальной оси до амплитудных точек.

4. Расслабим мышцы плеч и шеи и совершаем произвольные колебательные движения корпусом тела.

5. Руки на плечи. Выполняем круговые движения с частотой 2 об/с, т.е. с периодом 0,5 с.

6. Руки на пояс. Выполняем наклоны корпуса вправо и влево на угол π/4.


  1. Тест – контроль с взаимопроверкой.

11 класс.

Тест-контроль

«Гармонические колебания».

1 вариант.

А 1. Тело колеблется вдоль оси ох по гармоническому закону. Найти амплитуду колебаний, если модуль максимального ускорения равен 0,1 м/с², а период колебания – π.

1) 40 см; 2) 50 см; 3) 60 см; 4) 70 см.

А 2. Составьте уравнение гармонических колебаний тела по условию задания № 1.

  1. х= 0,6 соs 2t; 2) х = 0,4 соs 2t; 3) х = 0,4 соst; 4) х= 0,6 соst.

А 3. Найдите производную функции х = 12 sin 100πt.

1) х׳= 12 соs 100πt; 2) х׳= 1200 соs 100πt; х׳= - 12 соs 100πt; 4) х׳= - 1200 соs 100πt;

А 4. Каков физический смысл производной в задании № 3?

1) ускорение; 2) амплитуда; 3) перемещение; 4) скорость.

А 5. Второй производной от какой функции является выражение х׳׳= 16 х׳

1) х׳ = 2 sin 8t; 2) х׳= 2 sint; х׳ = sin 8t; 4) х׳ = 2 соst.

А 6. Напишите дифференциальное уравнение гармонического колебания х= 4 sin( 3tsin π/4)

1) 12 соs ( 3tsin π/4); 2) – 12 соs ( 3tsin π/4); 3) – 36 sin ( 3tsin π/4); 4) – 36 соs ( 3tsin π/4);

А 7. Уравнение f ׳׳(t)= - ω²f(t) называется:

1) уравнением скорости; 2) уравнением ускорения; 3) дифференциальным уравнением гармонического колебания; 4) уравнением гармонического колебания.




11 класс.

Тест-контроль

«Гармонические колебания».

2 вариант.

А 1. Тело совершает гармонические колебания вдоль оси х с амплитудой 0,5 м и периодом – π/5 с. Найти максимальную величину скорости тела:

1) 2 м/с; 2) 2,5 м/с; 3) 4 м/с; 4) 5 м/с.

А 2. Составьте уравнение гармонических колебаний тела по условию задания № 1.

1) х= 0,5 sin 10πt; 2) х= 0,5 sin 2 πt; 3) х= 0,5 sin 10t; 4) х= 0,5 sin 0,4t.

А 3. Найдите вторую производную функции х = 4 соst.

1) х׳׳= - 16 соst; 2) х׳׳=16 соst; 3) х׳׳= 8 sint; 4) х׳׳= - 8 соst.

А 4. Каков физический смысл производной в задании № 3?

1) ускорение; 2) амплитуда; 3) перемещение; 4) скорость.

А 5. Производной какой функции является выражение х׳ = 5х

1) х= соst; 2) х= 5 sin πt; 3) х= соs 5t; 4) х= 5 sin πt

А 6. Напишите дифференциальное уравнение гармонического колебания х = - 2 соs(0,5t – π).

1) – соs (0,5t – π); 2) 0,5 соs (0,5t – π); 3) 0,5 sin (0,5t – π); 4) - 0,5 sin (0,5t – π).

А 7. Выражение 2π/ω называется:

1) циклической частотой; 2) амплитудой колебания; 3) периодом колебания; 4) фазой колебания.


  1. Подведение итогов.

Сегодня на уроке мы изучали гармонические колебания, выяснили, что такое частота, амплитуда, период и фаза колебаний, а также познакомились с простыми дифференциальными уравнениями, выводом уравнения гармонических колебаний, скорости и ускорения при гармонических колебаниях., научились определять разность фаз для двух колебаний.

  1. Домашнее задание. Дифференцированные индивидуальные физико – математические задания по карточкам (3 уровня сложности).











Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.09.2015
Раздел Математика
Подраздел Конспекты
Просмотров362
Номер материала ДA-043404
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх