Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Физика / Другие методич. материалы / Исследовательская работа "Космический лифт"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Физика

Исследовательская работа "Космический лифт"

библиотека
материалов

IV Межрегиональная конференция школьников

«Дорога к звездам»










Космический лифт – фантастика или реальность?









Выполнил:

____________________

Руководитель:

___________________








Ярославль

2015



Содержание


  1. Введение

  2. Идеи космического лифта К.Э. Циолковского, Ю.Н. Арцутанова, Г.Г. Полякова

  3. Конструкция космического лифта

  4. Описание современных проектов

  5. Заключение





























Введение

В 1978 году выходит в свет научно – фантастический роман Артура Кларка «Фонтаны рая» (The Fountains of Paradise), посвященный идее строительства космического лифта. Действия происходят в XXII веке на несуществующем острове Тапробан, который, как указывает автор в предисловии, на 90% соответствует острову Цейлон (Шри-Ланка).

Нередко фантасты предсказывают появление изобретения не своего века, а намного более позднего времени.

Что же такое космический лифт?

Космический лифт — концепция инженерного сооружения для безракетного запуска грузов в космос. Данная гипотетическая конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции, находящейся на ГСО. Впервые подобную мысль высказал Константин Циолковский в 1895 году, детальную разработку идея получила в трудах Юрия Арцутанова.

Целью данной работы является изучение возможности построения космического лифта.






















Иhello_html_m5e21fca5.jpgдеи космического лифта К.Э. Циолковского, Ю.Н. Арцутанова и Г.Г. Полякова

Константин Циолковский — русский и советский ученый-самоучка, и изобретатель, школьный учитель. Основоположник теоретической космонавтики. Обосновал использование ракет для полётов в космос, пришёл к выводу о необходимости использования «ракетных поездов» — прототипов многоступенчатых ракет. Основные научные труды относятся к аэронавтике, ракетодинамике и космонавтике.

Представитель русского космизма, член Русского общества любителей мироведения. Автор научно-фантастических произведений, сторонник и пропагандист идей освоения космического пространства. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций. Считал, что развитие жизни на одной из планет Вселенной достигнет такого могущества и совершенства, что это позволит преодолевать силы тяготения и распространять жизнь по Вселенной.

В 1895 году русский ученый Константин Эдуардович Циолковский первым сформулировал понятие и концепцию космического лифта. Он описал отдельно стоящее сооружение, уходящее от уровня земли до геостационарной орбиты. Возвышаясь на 36 тысяч километров над экватором и следуя в направлении вращения Земли, в конечной точке с орбитальным периодом ровно в один день эта конструкция сохранялась бы в фиксированном положении.

Юhello_html_2e704bf8.jpgрий Николаевич Арцутанов — русский инженер, родившийся в Ленинграде. Выпускник Ленинградского

технологического института, известен как один из пионеров идеи космического лифта. В 1960 году он написал статью «В Космос — на электровозе», где он обсудил концепцию космического лифта как экономически выгодный, безопасный и удобный способ доступа к орбите для облегчения освоения космоса.

Юрий Николаевич развил идею Константина Циолковского. Концепция Арцутанова была основана на связывании геосинхронных спутников кабелем с Землей. Он предложил использовать спутник в качестве базы, с которой можно построить башню, так как геосинхронный спутник останется над неподвижной точкой на экваторе. С помощью противовеса кабель будет спущен с геосинхронной орбиты на поверхность Земли, в то время как противовес будет отдаляться от Земли, удерживая центр масс кабеля неподвижно относительно Земли.

Аhello_html_m15a06c94.jpgрцутанов предложил закрепить один конец такой «веревки» на земном экваторе, а ко второму концу, находящемуся далеко за пределами планетной атмосферы, - подвесить уравновешивающий груз. При достаточной длине «веревки» центробежная сила превысила бы силу притяжения и не позволила грузу упасть на Землю. Из приведенных Арцутановым расчетов, следует, что сила притяжения и центробежная сила оказываются равны на высоте около 42 000 километров. Равная нулю равнодействующая этих сил надежно закрепляет «камень» в зените.

Теперь герметичные электровозы побегут вертикально вверх – к орбите. Плавное наращивание скорости и плавное же торможение помогут избежать перегрузок, характерных для отрыва ракеты. После нескольких часов путешествия со скоростью 10 – 20 километров в секунду, последует первая остановка – в точке равноденствия сил, где раскинувшаяся в невесомости перевалочная станция откроет гостям двери баров, ресторанчиков, комнат отдыха – и замечательный вид на Землю из иллюминаторов.

После остановки кабина не только сможет двигаться без затрат энергии, так как её будет отбрасывать от Земли центробежная сила, - но и, вдобавок, генерировать двигателем, переключенным в режим динамо-машины, необходимое для возвращения электричество.

Вторую – и конечную остановку предлагалось сделать на расстоянии 60 000 километров от Земли, где равнодействующая сил сравняется с силой тяжести на земной поверхности, и позволит создать на «конечной станции» искусственную гравитацию. Здесь же, на краю длиннейшей канатной дороги будет располагаться настоящий орбитальный космодром. Он, как и полагается, станет запускать по Солнечной системе космические корабли, придавая им солидную скорость и назначая траекторию.

Не желая ограничиваться примитивным канатом, Юрий Арцутанов навешал на него гелиоэлектростанций, перерабатывающих солнечную энергию в электрический ток, и соленоидов, генерирующих электромагнитное поле. В этом поле должен двигаться «электровоз».

Если оценить вес такого магнитодорожного полотна, учитывая протяженность в 60 000 километров, то получается - сотни миллионов тонн? Гораздо больше. Не одна тысяча ракет потребуется, чтобы отбуксировать эту тяжесть к орбите! В то время это казалось невозможным.

Однако ученый и на этот раз подкинул верную идею: лифт не обязательно строить снизу вверх, как огромную циклопическую башню – достаточно запустить на геостационарную орбиту искусственный спутник, с которого будет спущена первая нить. В сечении эта нить окажется тоньше человеческого волоса, так чтобы вес ее не превосходил тысячу тонн. После того, как свободный конец нити закрепят на земной поверхности, сверху вниз по нити побежит «паук» – легкое устройство, плетущее вторую, параллельную нить. Он будет работать до тех пор, пока канат не станет достаточно толстым, чтобы выдержать «электровоз», электромагнитное полотно, гелиоэлектростанции, комнаты отдыха и рестораны.

Вполне объяснимо, почему в эпоху космических гонок идея Юрия Валерьевича Арцутанова осталась никем не замеченной. Тогда не было ни одного материала способного выдержать столь высокое давление разрыва троса.

В развитие идей Арцутанова свой проект космического лифта в 1977 году предложил Георгий Поляков из Астраханского педагогического института.

Принципиально этот лифт почти ничем не отличается от вышеописанного. Поляков лишь указывает: реальный космический лифт будет устроен куда сложнее, чем описанный Арцутановым. Фактически он будет состоять из ряда простых лифтов с последовательно уменьшающимися длинами. Каждый представляет собой самоуравновешенную систему, но лишь благодаря одному из них, что достигает Земли, обеспечивается устойчивость всей конструкции.

Длина лифта (примерно 4 диаметра Земли) выбрана с таким расчетом, чтобы аппарат, отделившийся от его верхушки, сумел бы уйти по инерции в открытый космос. В верхней точке будет смонтирован стартовый пункт для межпланетных кораблей. А возвращающиеся из полета корабли, предварительно выйдя на стационарную орбиту, «прилифтуются» в районе базы.

С конструкторской точки зрения космический лифт представляет собой две параллельные трубы или шахты прямоугольного сечения, толщина стенок которых изменяется по определенному закону. По одной из них кабины движутся вверх, а по другой — вниз. Конечно, ничто не мешает соорудить несколько таких пар. Труба может быть не сплошной, а состоящей из множества параллельных тросов, положение которых фиксируется серией поперечных прямоугольных рамок. Это облегчает монтаж и ремонт лифта.

Кабины лифта — просто площадки, приводимые в движение индивидуальными электродвигателями. На них крепятся грузы или жилые модули — ведь путешествие в лифте может продолжаться неделю, а то и больше.

В целях экономии энергии можно создать систему, напоминающую канатную дорогу. Она состоит из ряда шкивов, через которые перекинуты замкнутые тросы с подвешенными на них кабинами. Оси шкивов, где смонтированы электродвигатели, закреплены на несущей лифта. Здесь вес поднимающихся и опускающихся кабин взаимно уравновешен, и, следовательно, энергия расходуется лишь на преодоление трения.

Для соединительных «нитей», из которых собственно и образуется лифт, необходимо использовать материал, у которого отношение разрывного напряжения к плотности в 50 раз больше, чем у стали. Это могут быть разнообразные «композиты», пеностали, бериллиевые сплавы или кристаллические усы...

Впрочем, Георгий Поляков не останавливается на уточнении характеристик космического лифта. Он указывает на то обстоятельство, что уже до конца XX века геосинхронная орбита будет густо «усеяна» космическими аппаратами самых различных типов и назначений. А поскольку все они будут практически неподвижны относительно нашей планеты, представляется весьма заманчивым связать их с Землей и между собой с помощью космических лифтов и кольцевой транспортной магистрали.

На основании этого соображения Поляков выдвигает идею космического «ожерелья» Земли. Ожерелье послужит своеобразной канатной (или рельсовой) дорогой между орбитальными станциями, а также обеспечит им устойчивое равновесие на геосинхронной орбите.

Так как длина «ожерелья» весьма велика (260 000 километров), на нем можно разместить очень много станций. Если, скажем, поселения отстоят друг от друга на 100 километров, то их число составит 2600. При населении каждой станции в 10 тысяч на кольце будут обитать 26 миллионов человек. Если же размеры и количество таких «астрогородов» увеличить, эта цифра резко возрастет.
















Конструкция космического лифта

Основание

Оhello_html_m28e19769.jpgснование космического лифта — это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне. Преимущество подвижного основания — возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы — более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту. Дополнительно к основанию может быть размещена площадка на стратостатах, для уменьшения веса нижней части троса с возможностью изменения высоты для избегания наиболее бурных потоков воздуха, а также гашения излишних колебаний по всей длине троса.

Трос

Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65-120 гигапаскалей. Для сравнения, прочность большинства видов стали — около 1 ГПа, и даже у прочнейших её видов — не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6—4,1 ГПа, а у кварцевого волокна — до 20 ГПа и выше. Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем её компоненты.

В эксперименте учёных из Университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 — кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм. По заявлениям некоторых учёных, даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.

Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику в качестве контактной шины.

В июне 2013 года инженеры из Колумбийского университета США сообщили о новом прорыве: благодаря новой технологии получения графена удается получать листы, с размером по диагонали в несколько десятков сантиметров и прочностью лишь на 10% меньше теоретической.

Утолщение троса

Космический лифт должен выдерживать, по крайней мере, свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой — прибавляет его вес, а, следовательно, и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других — выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

Можно показать, что с учётом гравитации Земли и центробежной силы, НО, не учитывая меньшее влияние Луны и Солнца, сечение троса в зависимости от высоты будет описываться следующей формулой:


hello_html_m7677c992.png

, где hello_html_m5c522e98.png — площадь сечения троса как функция расстояния r от центра Земли.

В формуле используются следующие константы:

hello_html_m47316419.pngплощадь сечения троса на уровне поверхности Земли.

hello_html_m10bfb93.pngплотность материала троса.

hello_html_7e027a51.pngпредел прочности материала троса.

hello_html_m7b94b501.pngкруговая частота вращения Земли вокруг своей оси, 7,292·10−5 радиан в секунду.

hello_html_1da33bad.pngрасстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли, 6 378 км.

hello_html_m6d177b1f.pngускорение свободного падения у основания троса, 9,780 м/с².

Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув, в конце концов, геостационарной орбиты. После этого толщина снова начинает уменьшаться.

Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:

hello_html_4c3b2fe6.png

Пhello_html_m57b70954.jpgодставив сюда плотность и прочность стали, и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

  1. Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.

  2. Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО. Тот же расчет, выполненный из предположения, что плотность троса равна плотности углеволокна ρ = 1,9 г/см3 (1900 кг/м3), с предельной прочностью σ = 90 ГПА (90·109 Па) и диаметром троса у основания 1 см (0.01 м), позволяет получить диаметр троса на ГСО всего 9 см.

  3. Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км[8], которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.

  4. Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.

  5. Ещё способ — сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20—25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха). Также есть идея вместо троса из нанотрубок использовать условные силовые линии магнитного поля Земли.

Противовес

Противовес может быть создан двумя способами — путём привязки тяжёлого объекта (например, астероида, космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант интересен тем, что с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

Угловой момент, скорость и наклон

Горизонтальная скорость каждого участка троса растёт с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости. Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость). Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении — за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину, и противовес на большую величину, в результате замедления вращения противовеса трос начнет наматываться на землю. В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадёт. К моменту достижения грузом геостационарной орбиты (ГСО) его угловой момент достаточен для вывода груза на орбиту. Если груз не высвободить с троса, то остановившись вертикально на уровне ГСО, он будет находиться в состоянии неустойчивого равновесия, а при бесконечно малом толчке вниз, сойдет с ГСО и начнет опускаться на Землю с вертикальным ускорением, при этом замедляясь в горизонтальном направлении. Потеря кинетической энергии от горизонтальной составляющей при спуске будет передаваться через трос, угловому моменту вращения Земли, ускоряя её вращение. При толчке вверх груз также сойдет с ГСО, но в противоположном направлении, то есть начнет подниматься по тросу с ускорением от Земли, достигнув конечной скорости на конце троса. Поскольку конечная скорость зависит от длины троса, её величина, таким образом, может быть задана произвольно. Следует отметить, что ускорение и прирост кинетической энергии груза при подъеме, то есть его раскручивание по спирали, будут происходить за счет вращения Земли, которое при этом замедлится. Данный процесс полностью обратим, то есть если на конец троса надеть груз и начать его опускать, сжимая по спирали, то угловой момент вращения Земли соответственно увеличится. При спуске груза будет происходить обратный процесс, наклоняя трос на восток.

Запуск в космос

На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну. Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему. Это произойдёт за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта. Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.















Описание современных проектов

В середине и в конце 20-го века появились более подробные предложения. Возлагались надежды, что космический лифт сделает революцию в доступе к околоземному космическому пространству, к Луне, Марсу и даже далее. Данное сооружение смогло бы раз и навсегда решить проблему, связанную с отправкой человека в космос. Лифт очень помог бы многим космическим агентствам в доставке астронавтов на орбиту нашей планеты. Его создание может означать конец загрязняющим пространство ракетам. Однако стартовые инвестиции и уровень необходимых технологий ясно давали понять, что такой проект нецелесообразен и отводили ему место в области научной фантастики.

Возможно ли решить проблему такого строительства в данный момент? Сторонники космических лифтов считают, что в настоящее время достаточно возможностей для решения данной технической задачи. Они считают, что космические ракеты устарели и наносят непоправимый вред природе и слишком дороги для современного общества.

Камень преткновения лежит в том, как построить такую систему. «Для начала она должна быть создана из пока не существующего, но прочного и гибкого материала с нужной массой и характеристиками плотности, чтобы поддерживать транспорт и выдержать невероятное воздействие внешних сил, — говорит Фонг. — Думаю, все это потребует серии самых амбициозных орбитальных миссий и космических прогулок на низкой и высокой околоземной орбитах в истории нашего вида».

Есть также проблемы безопасности, добавляет он. «Даже если бы мы могли решить существенные технические трудности, связанные со строительством такой штуки, вырисовывается страшная картина гигантского сыра с дырками, пробитыми всем этим космическим мусором и обломками наверху».

Учёные всего мира разрабатывают идею космического лифта. Японцы в начале 2012 года объявили о том, что они планируют построить космический лифт. Американцы об этом же сообщили в конце 2012-го. В 2013-м СМИ вспомнили о русских корнях "космического лифта". Так, когда же данные идеи станут реальностью?

Концепция Японской корпорации Obayashi

Корпорация предлагает следующий способ постройки: один конец троса очень высокой прочности удерживается массивной платформой в океане, а второй — закрепляется на орбитальной станции. По канату перемещается специально спроектированная кабинка, которая может доставлять грузы, астронавтов или, скажем, космических туристов.


hello_html_m32d33a9f.jpg

В качестве материала для троса Obayashi рассматривает углеродные нанотрубки, которые в десятки раз прочнее стали. Но проблема заключается в том, что в настоящее время длина таких нанотрубок ограничивается примерно 3 см, в то время как для космического лифта потребуется трос общей протяжённостью в 96 000 км. Ожидается, что преодолеть существующие трудности станет возможно ориентировочно в 2030-х годах, после чего начнётся практическая реализация концепции космического лифта.

Obayashi уже рассматривает возможность создания особых туристических кабинок, рассчитанных на перевозку до 30 пассажиров. Кстати, путь на орбиту по тросу из углеродных нанотрубок будет занимать семь дней, поэтому придётся предусмотреть необходимые системы обеспечения жизнедеятельности, запас еды и воды.

Запустить космический лифт Obayashi рассчитывает только к 2050 году.

Космический лифт компании LiftPort Group

Не только Земля станет объектом, где будет сооружен такой лифт. По мнению группы экспертов из компании LiftPort Group в качестве такого объекта вполне может выступить и Луна.

Основой лунного космического лифта является плоский ленточный кабель, изготовленный из высокопрочного материала. По этому кабелю на поверхность Луны и назад будут ходить транспортные гондолы, доставляющие людей, различные материалы, механизмы и роботов.

hello_html_m69d54b4.jpg

«Космический» конец кабеля будет удерживаться космической станцией PicoGravity Laboratory (PGL), находящейся в точке Лагранжа L1 системы Луна-Земля, в точке, где гравитация Луны и Земли взаимно уравновешивают друг друга. На Луне конец кабеля будет присоединен к якорной станции Anchor Station, находящейся в районе Sinus Medi (приблизительно в середине «лица» Луны, смотрящего на Землю) и входящей в состав инфраструктуры космического лифта Lunar Space Elevator Infrastructure.

Натяжение кабеля космического лифта будет осуществляться противовесом, который будет удерживаться более тонким кабелем длиной в 250 тысяч километров, и который будет находиться уже во власти земной гравитации. Космическая станция PicoGravity Laboratory будет иметь модульную структуру, наподобие структуры существующей Международной космической станции, что позволит без особого труда производить ее расширение и добавлять стыковочные узлы, позволяющие стыковаться со станцией космическим кораблям различных типов.

Основной целью данного проекта является отнюдь не строительство самого космического лифта. Этот лифт станет лишь средством доставки на Луну автоматических аппаратов, которые в автономном режиме будут вести добычу различных полезных ископаемых, в том числе редкоземельных металлов и гелия-3, который является перспективным топливом для будущих реакторов термоядерного синтеза и, возможно, топливом для космических кораблей будущего.

«К сожалению, данный проект пока практически невыполним в связи с отсутствием у людей множества ключевых технологий. Но исследования большинства таких технологий уже ведутся некоторое время, и обязательно наступит тот момент, когда строительство космического лифта перейдет из разряда научной фантастики в область практически выполнимых вещей».

Специалисты компании LiftPort Group обещают сделать рабочий детализированный проект сооружения к концу 2019 года.

«Общепланетное транспортное средство»

Рассмотрим проект, получивший название «Общепланетное транспортное средство» (ОТС). Его выдвинул и обосновал инженер Анатолий Юницкий из Гомеля.

В 1982 году в журнале «Техника молодежи» была опубликована статья, в которой автор утверждает, что у человечества в скором времени появится потребность в принципиально новом транспортном средстве, способном обеспечивать перевозки на трассе «Земля – космос – Земля».

По мнению А. Юницкого ОТС представляет собой замкнутое колесо поперечным диаметром порядка 10 метров, которое покоится на специальной эстакаде, установленной вдоль экватора. Высота эстакады в зависимости от рельефа колеблется в пределах от нескольких десятков до нескольких сотен метров. Эстакада размещена на плавучих опорах в океанских просторах.

В герметичном канале, расположенном по оси корпуса ОТС, находится бесконечная лента, имеющая магнитную подвеску и являющаяся своеобразным ротором двигателя. В нее наводится ток, который будет взаимодействовать с породившим его магнитным полем, и лента, не испытывающая никакого сопротивления (она размещена в вакууме), придет в движение. Точнее, во вращение вокруг Земли. При достижении первой космической скорости лента станет невесомой. При дальнейшем разгоне ее центробежная сила через магнитную подвеску станет оказывать на корпус ОТС всевозрастающую вертикальную подъемную силу, пока не уравновесит каждый его погонный метр (транспортное средство как бы станет невесомым — чем не антигравитационный корабль?).

В удерживаемое на эстакаде транспортное средство с предварительно раскрученной до скорости 16 км/с верхней лентой, имеющей массу 9 тонн на метр, и точно такой же, но лежащей неподвижно нижней лентой размещают груз и пассажиров. Это делается в основном внутри, а частично и снаружи корпуса ОТС, но так, чтобы нагрузка в целом была равномерно распределена. После освобождения от захватов, удерживающих ОТС на эстакаде, его диаметр под действием подъемной силы начнет медленно расти, а каждый его погонный метр — подниматься над Землей. Поскольку форма окружности отвечает минимуму энергии, то транспортное средство, до этого копировавшее профиль эстакады, примет после подъема форму идеального кольца.

Скорость подъема ОТС на любом из участков пути может быть задана в широких пределах: от скорости пешехода до скорости самолета. Атмосферный участок транспортное средство проходит на минимальных скоростях.

По оценке Анатолия Юницкого, общая масса ОТС составит 1,6 миллиона тонн, грузоподъемность — 200 миллионов тонн, пассажировместимость — 200 миллионов человек. Расчетное число выходов ОТС в космос за пятидесятилетний срок службы — 10 тысяч рейсов.




























Заключение

Существует множество проектов космического лифта, и все они мало отличаются от того, что предлагал Арцупанов, но теперь учёные исходят из того, что материалы из нанотрубок станут доступны.

Космический лифт изменит космическую индустрию: люди и груз будут доставляться на орбиту со значительно более низкими затратами по сравнению с традиционными запусками ракет-носителей.

Будем надеяться, что во второй половине 21 – го века космические лифты станут функционировать за пределами Земли: на Луне, Марсе и других уголках Солнечной Системы. С развитием технологий стоимость строительства будет постепенно снижаться.

Несмотря на то, что это время кажется далеким и недосягаемым, именно от нас зависит, каким будет будущее и как быстро оно наступит.






















Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 03.02.2016
Раздел Физика
Подраздел Другие методич. материалы
Просмотров656
Номер материала ДВ-409612
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх