Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Информатика / Другие методич. материалы / Исследовательская работа по информатике "Системы счисления"

Исследовательская работа по информатике "Системы счисления"



Внимание! Сегодня последний день приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Информатика

Название документа Доклад.doc

Поделитесь материалом с коллегами:

Доклад

Данная тема была выбрана, потому что понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Стало интересно узнать, кто стоит у истоков различных систем счисления, как давно и где их начали применять, почему двоичная система счисления сохранилась до наших дней.

Была поставлена следующая цель: познакомиться с различными системами счисления, подробнее рассмотреть двоичную систему счисления.

Для достижения поставленной цели сформулировали следующие задачи: изучить литературу о различных системах счисления, почему в ЭВМ информация представляется в двоичной системе счисления и чем она удобна, где еще используется двоичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен.

Довольно широкое распространение имела двенадцатеричная система счисления. Происхождение ее тоже связано со счетом на пальцах. Считали большой палец руки и фаланги остальных четырех пальцев: всего их 12.

Особый интерес представляет так называемая «вавилонская», или шестидесятеричная, система счисления, весьма сложная система, существовавшая в Древнем Вавилоне.

Также существовали римская система счисления, египетская система счисления, китайская система счисления и другие.

Системы счисления различают:

- Анатомического происхождения: десятеричная, пятеричная, двенадцатеричная, двадцатеричная.

- Алфавитные: древнеармянская, древнегрузинская, древнегреческая, ионическая, славянская.

- Машинные: двоичная, восьмеричная, шестнадцатеричная.

- Прочие: Римская, Вавилонская, Египетская нумерация, Китайская нумерация и другие.

Различают позиционные и непозиционные системы счисления.

Непозиционные системы счисления возникли раньше позиционных.

Позиционные системы счисления. В позиционных системах счисления величина, обозначается цифрой, зависит от места цифры в числе. Так в числе 222 цифра 2 встречается трижды. Но самая правая означает две единицы, вторая справа – два десятка и, наконец, третья – две сотни.

Непозиционные системы счисления. В непозиционных системах счисления значение числа определяется как сумма или разность цифр в числе. В непозиционных системах счисления считать трудно. Древние греки построили геометрию, которую сегодня изучают в школе, доказали важные теоремы теории чисел, но считать они не умели. Примером непозиционный системы счисления является римская система счисления.

Обработка информации в ЭВМ основана на обмене электрическими сигналами между различными устройствами машины. Эти сигналы возникают в определенной последовательности. Признак наличия сигнала можно обозначить цифрой 1, признак отсутствия – цифрой 0. Таким образом, в ЭВМ реализуются два устойчивых состояния. С помощью определенных наборов цифр 0 и 1 можно закодировать любую информацию. Каждый такой набор нулей и единиц называется двоичным кодом.

Применение систем счисления различно:

  • Это решение задачи «Деньги в конвертах»

  • «Книга перемен»

  • «Азбука Морзе»

  • алфавитное кодирование, штрих коды и их использование.

В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой.

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

- ею пользуются только для ЭВМ для внутренней и внешней работы;

- быстрый рост числа разрядов, необходимых для записи чисел.

Название документа Системы счисления и их применение.doc

Поделитесь материалом с коллегами:


Научно-практическая конференция

«Здравствуй, мир!»









Исследовательская работа на тему

«Системы счисления и их применение»





Выполнила: Акишева Алсу

ученица 7 класса

МБОУ «Новоуспеновская СОШ»

Руководитель: Аманжулова А.Ж.

учитель информатики









с. Новоуспеновка, 2014 г.

Оглавление


Введение……………………………………………...…………………….…...…3

I. Системы счисления……………………………………………………………..6

1.1. Группы систем счисления……………………………………………………6

1.2. Классификация систем счисления…………………………………………..6

1.3. Представление информации в ЭВМ………………………………………...7

II. Почему удобна двоичная система? …………………………..………………8

III. Задача на использование двоичной системы счисление………………….10

«Деньги в конвертах и зерна на шахматной доске»…………………………...10

IV. Применение двоичной системы счисления…………………..…..………..12

4.1. «Книга перемен»…………………………………………………………….12

4.2. Азбука Морзе………………………………………………………………..13

4.3. Алфавитное кодирование, штрих-коды и их использование…………….14

Заключение ………………………..……………………………………………..16

Список использованной литературы….…………………..…………………....17

Приложение.………………………………….…..…………………………..…..18



















Введение


Данная тема была выбрана, потому что понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Стало интересно узнать, кто стоит у истоков различных систем счисления, как давно и где их начали применять, почему двоичная система счисления сохранилась до наших дней.

Была поставлена следующая цель: познакомиться с различными системами счисления, подробнее рассмотреть двоичную систему счисления.

Для достижения поставленной цели сформулировали следующие задачи: изучить литературу о различных системах счисления, почему в ЭВМ информация представляется в двоичной системе счисления и чем она удобна, где еще используется двоичная система счисления.

"Все есть число", — говорили пифагорийцы (ученики древнегреческого математика Пифагора). Значит всё можно обозначить числом. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.

Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:

hello_html_m7e75c7b8.png

Довольно широкое распространение имела двенадцатеричная система счисления. Происхождение ее тоже связано со счетом на пальцах. Считали большой палец руки и фаланги остальных четырех пальцев: всего их 12 (см. Приложение, рис. 1).

По свидетельству известного исследователя Африки Стенли, у ряда африканских племен была распространена пятеричная система счисления. Долгое время пользовались пятеричной системой счисления и в Китае. Очевидная связь этой системы счисления со строением человеческой руки.

У ацтеков и майя – народов, населявших в течение многих столетий обширные области Американского континента и создавших там высочайшую культуру, в том числе и математическую, была принята двадцатеричная система счисления. Также двадцатеричная система счисления была принята и у кельтов, населявших Западную Европу начиная со второго тысячелетия до нашей эры. Основу для счета в этой системе счисления составляли пальцы рук и ног. Некоторые следы двадцатеричной системы счисления кельтов сохранились во французской денежной системе: основная денежная единица, франк, делится на 20 (1 франк = 20 су).

Особый интерес представляет так называемая «вавилонская», или шестидесятеричная, система счисления (см. Приложение, рис. 2), весьма сложная система, существовавшая в Древнем Вавилоне. Мнения историков по поводу того, как именно возникла эта система счисления, расходятся. Существуют две гипотезы. Первая исходит из того, что произошло слияние двух племён, одно из которых пользовалось шестеричной, другое - десятичной. Шестидесятеричная система счисления в данном случае могла возникнуть в результате своеобразного политического компромисса. Суть второй гипотезы в том, что древние вавилоняне считали продолжительность года равной 360 суткам, что естественно связано с числом 60. Отголоски использования этой системы счисления дошли до наших дней. Например, 1 час = 60 минут, 1 градус = 60минут. В целом шестидесятеричная система счисления громоздка и неудобна.

Перед математиками и конструкторами в 50-х гг. встала проблема отыскания таких систем счисления, которые отвечали бы требованиям, как разработчиков ЭВМ, так и создателей программного обеспечения. Специалисты выделили так называемую «машинную» группу систем счисления. И разработали способы преобразования чисел этой группы.

1. Системы счисления


Прежде всего, были изучены газеты и журналы по информационным технологиям, была рассмотрена информация в Интернете. На основе полученных материалов можно сказать, что системы счисления делятся на различные группы.


1.1. Группы систем счисления

Системы счисления различают:

- Анатомического происхождения: десятеричная, пятеричная, двенадцатеричная, двадцатеричная.

- Алфавитные: древнеармянская, древнегрузинская, древнегреческая, ионическая, славянская.

- Машинные: двоичная, восьмеричная, шестнадцатеричная.

- Прочие: Римская, Вавилонская, Египетская нумерация, Китайская нумерация (см. Приложение) и другие.


1.2. Классификация систем счисления

Различают позиционные и непозиционные системы счисления.

Непозиционные системы счисления возникли раньше позиционных.

Позиционные системы счисления. В позиционных системах счисления величина, обозначается цифрой, зависит от места цифры в числе. Так в числе 222 цифра 2 встречается трижды. Но самая правая означает две единицы, вторая справа – два десятка и, наконец, третья – две сотни.

Непозиционные системы счисления. В непозиционных системах счисления значение числа определяется как сумма или разность цифр в числе. В непозиционных системах счисления считать трудно. Древние греки построили геометрию, которую сегодня изучают в школе, доказали важные теоремы теории чисел, но считать они не умели. Примером непозиционный системы счисления является римская система счисления (см. Приложение, рис. 3).

1.3. Представление информации в ЭВМ

Обработка информации в ЭВМ основана на обмене электрическими сигналами между различными устройствами машины. Эти сигналы возникают в определенной последовательности. Признак наличия сигнала можно обозначить цифрой 1, признак отсутствия – цифрой 0. Таким образом, в ЭВМ реализуются два устойчивых состояния. С помощью определенных наборов цифр 0 и 1 можно закодировать любую информацию. Каждый такой набор нулей и единиц называется двоичным кодом. Количество информации, кодируемое двоичной цифрой – 0 или 1 – называется битом. Бит является единицей измерения количества информации. На практике чаще, чем с битом нам приходится работать с байтом – единицей измерения объема данных. Например, русской букве М в так называемой альтернативной кодировке соответствует следующий набор нулей и единиц – 10001100, а русской букве А – 10000000, тогда слово МАМА закодируется 32-разрядным двоичным кодом:

10001100 10000000 10001100 10000000

Широкое распространение получила т.н. кодировка ASCII (American Standard Code for Information Interchange – американский стандартный код для обмена информацией). Это семиразрядный код (каждый символ кодирует семью двоичными разрядами) – таким образом, всего можно закодировать 128 символов. Мы обычно пользуемся восьмиразрядным расширением кода ASCII. За счет добавления «лишнего» разряда можно получить еще128 символов, всего их становится 256. Это расширение позволяет кодировать буквы русского алфавита и некоторые специальные символы.

2. Почему удобна двоичная система?


Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.

Вот, что писал Лаплас об отношении великого немецкого математика Г.В. Лейбница к двоичной (бинарной) системе: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытиё и что высшее существо создает все сущее из небытия точно таким же образом, как единица и нуль в его системе выражают все числа».

Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать: ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления. Таблица деления сводится к двум равенствам 0/1 = 0, 1/1 = 1, благодаря чему деление столбиком многозначных двоичных чисел делается гораздо проще, чем в десятичной системе и, по существу, сводится к многократному вычитанию.

Таблица сложения, как ни странно, чуть сложнее, потому что 1 + 1 = 10 и возникает перенос в следующий разряд. В общем виде операцию сложения однобитовых чисел можно записать в виде x + y = 2w + v, где w, v – биты результата. Внимательно посмотрев на таблицу сложения, можно заметить, что бит переноса w – это просто произведение xy, потому что он равен единице лишь, когда x и y равны единице. А вот бит, равен за исключением случая = 1, когда он равен не 2, а 0. Операцию, с помощью которой по битам вычисляют, бит называют по-разному. Мы будем использовать для нее название «сложение по модулю 2» и символ. Таким образом, сложение битов выполняется фактически не одной, а двумя операциями.

Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

- электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

- участок поверхности магнитного носителя информации (намагничен/ размагничен);

- участок поверхности лазерного диска (отражает/не отражает);

- триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.














3. Задача на использование двоичной системы счисления


«Деньги в конвертах и зерна на шахматной доске»

Поставим перед собой задачу. Допустим, что мы банкиры, занимающиеся отмыванием грязных денег, и завтра ждем важного клиента, которому мы должны выдать круглую или не очень круглую, но заранее нам известную сумму от 1 до 1 000 000 000 у.е. чтобы не пачкать руки о грязные деньги, мы заранее дали своим кассирам заготовить некоторое количество конвертов с деньгами, на которых написаны содержащиеся в них суммы, и собираемся просто отдать клиенту один или несколько конвертов, в которых и будет содержаться требуемая нам сумма. Какое количество конвертов необходимо иметь?

Конечно, можно просто заготовить конверты со всеми суммами от 1 до 1 000 000 000, но где взять столько денег на конверты?

Узнаем, какова будет в этом случае полная сумма во всех конвертах? Попробуем оценить также массу бумаги, предполагая, что использованы не более чем сотенные купюры.

Есть более рациональные подход к нашему делу. Надо положить в первый конверт 1 у.е., а в каждый следующий класть вдвое большую сумму, чем в предыдущий. Тогда, например, в 5-м конверте будет 16 у.е., в 10-м – 512 у.е., в 11-м –1024 у.е., в 21-м –1024 = 1 048 576 у.е., в 31-м –1024 = 1 073 741 824 у.е., но он нам, очевидно, уже не понадобится, а вот 30-й с 1 073 741 824/2 = 536 870 912 у.е. может и пригодиться. В общем случае сумма в (n + 1)-м конверте будет равна произведению n двоек, это число принято обозначать 2 и называть n-й степенью двойки. Условимся считать, что 20 = 1. проведенные выше вычисления основались на следующих свойствах операции возведения в степень:

2n2m = 2n+m, 2n /2m = 2n-m, (2n)m = 2nm.

Экспериментально легкое проверить, что любое число можно представить единственным образом в виде суммы различных меньших степеней двойки, и поэтому наша задача решена. Например, 30 000 = 214 + 213 + 212 + 210 + 28 + 25 + 24.

Но для реального применения нужен алгоритм построения такого разложения. Далее приведем несколько разных алгоритмов, но в начале мы рассмотрим самый простой. В сущности, это алгоритм выдачи сдачи клиенту, записанный некогда даже в инструкции для работников торговли, но очень редко ими выполняющийся. А он очень прост – сдачу надо выдавать, начиная с самых больших купюр. В нашем случае нужно найти конверт с наибольшей суммой денег, не превосходящей требуемую, т.е. наибольшую степень двойки, не превосходящую требуемого количества денег. Если требуемая сумма равна этой степени, то алгоритм заканчивает работу. В противном случае опять выбирается конверт с наибольшей суммой денег, не превосходящей оставшуюся и т.д. Алгоритм закончит работу, когда останется сумма, в точности равная степени двойки, и она будет выдана последним конвертом.

Видно, что понятие двоичной записи очень похоже на понятие десятичной записи и в каком-то смысле даже проще.





















4. Применение систем счисления


4.1. «Книга перемен»

Двоичная система, по крайней мере, в своей комбинаторной ипостаси, по существу была известна в Древнем Китае. В классической книге «И цзин» («Книга перемен») приведены так называемые «гексаграммы Фу-си», первая из которых имеет вид, а последняя (64-я) – вид, причем они расположены по кругу и занумерованы в точном соответствии с двоичной системой (нулями и единицами соответствуют сплошные и прерывистые линии). Китайцы не поленились придумать для этих диаграмм специальные иероглифы и названия (например, первая из них называлась «кунь», а последняя – «цянь», сплошной линии сопоставляется мужское начало янь, а прерывистой линии – женское начало инь).

Каждая гексаграмма состоит из двух триграмм (верхней и нижней), им тоже соответствуют определенные иероглифы и названия. Например, триграмме из трех сплошных линий сопоставлен образ-атрибут «небо, творчество», а триграмме из трех прерывистых линий сопоставлен образ-атрибут «земля, податливость, восприимчивость». Их также принято располагать циклически, но этот цикл не является кодом Грея.

«Книга перемен» очень древняя, возможно, одна из древнейших в мире, и кто ее написал – неизвестно. Она использовалась ранее, и используется в настоящее время, в том числе и на Западе, для гадания. В Европе с аналогичной целью используются карты Таро. В чем-то обе эти системы схожи, но Таро никак не связаны с двоичной системой, поэтому о них мы говорить не будем.

Способ гадания по «Книге перемен» в кратком изложении таков. Бросается шесть раз монета (или лучше пуговица, деньги в гадании применять не рекомендуется), и по полученным результатам (орел или решка) разыскивается подходящая гексаграмма (для этого надо заранее сопоставить орлу и решке янь или инь). По гексаграмме разыскиваете соответствующий раздел «Книги перемен» и читаете, что там написано.


4.2. Азбука Морзе

Сэмюель Морзе известен, однако, не только изобретением азбуки. Он был и художником-портретистом (его картина «Генерал Лафайет» до сих пор висит в нью-йоркском Сити-Холле), и одним из первых фотографов в Америке (учился делать дагерротипные фотографии у самого Луи Дагерра), и политиком (он балатировался в 1836 году на пост мэра Нью-Йорка), но самое главное его достижение – изобретение телеграфа (а азбука Морзе понадобилась ему для использования телеграфа). Заодно он изобрел устройство, которое называется реле. Именно из реле спустя сто лет после Морзе были построены первые компьютеры.

Начал свои работы в этом направление он в 1832 году, запатентовал свое изобретение в 1836 году, но публичная демонстрация телеграфа произошла только 24 мая 1844 года. По телеграфной линии, соединяющей Вашингтон с Балтимором, была успешно передана фраза из Библии.

Точка и тире оказались самыми элементарными символами, которые мог передавать его телеграф. Они соответствовали коротким и длинным импульсам электрического тока, передаваемым по телеграфным проводам. Длина импульса определялась нажатием руки телеграфиста на ключ телеграфа. Прием сигнала осуществляло реле, которое после появления в нем импульса тока включало электромагнит, который либо заставлял стучать молоточек, либо прижимал колесико с красящей лентой к бумажной ленте, на которой отпечатывались либо точка, либо тире в зависимости от длины импульса.

Азбука Морзе сопоставляет каждой букве алфавита последовательность из точек и тире. Естественней всего использовать такие последовательности длины 6, их всего 64 и хватит даже на русский алфавит. Но Морзе понимал, что длину сообщения желательно уменьшить, насколько возможно, поэтому он решил использовать последовательности длины не более 4, их всего 2 + 4 + 8 + 16 = 30. в русском алфавите пришлось не использовать буквы «э» и «ё» и отождествить мягкий и твердый знаки. Кроме того, наиболее часто используемых буквами он предложил давать самые короткие коды, чтобы уменьшить среднюю длину передаваемого сообщения. Эту идею в наше время используют с той же целью в алфавитном кодировании.


4.3. Алфавитное кодирование, штрих-коды и их использование

Пусть, например, кодирующим алфавитом является двухбуквенный алфавит, например, состоящий из символов 0, 1. Схемой алфавитного кодирования называется отображение каждой буквы кодируемого алфавита в некоторое слово в кодирующем алфавите (называемое элементарным кодом), в рассматриваемом случае – последовательность нулей или единиц. Пользуясь этой схемой, можно закодировать любое слово в кодируемом алфавите, заменяя в нем каждую букву на соответствующий ей элементарный код, и превратить исходное слово в более длинное слово в кодирующем алфавите.

Если вместо двоичных цифр использовать обычный алфавит, но со шрифтами двух типов, то таким методом можно в любом тексте спрятать шифровку, если, конечно, шрифты будут достаточно малоразличимы. Желательно при этом использовать разделимый код. Длина зашифрованного сообщения будет в несколько раз короче, чем длина содержащего его (и одновременно маскирующего его) текста, но если для передачи шифровки использовать книгу, то в ней можно, таким образом, незаметно разместить еще целую книгу. Но эта красивая идея из-за дороговизны ее реализации так и не нашла применения. В наше же время ее нельзя рассматривать как серьезный метод.

Примером реального применения двоичного кодирования в современной технике служат штрих-коды. В супермаркетах на упаковках товаров можно увидеть штрих-код. Для чего он нужен, и как его прочитать?

Нужен он только для автоматического занесения информации в кассовый аппарат. Сам штрих-код состоит из тридцати черных полос переменой толщины, разделенной промежутками тоже переменой толщины. Толщина полос может принимать четыре значения – от самой тонкой до самой толстой. Такую же толщину могут иметь и промежутки. Когда по сканеру проводят штрих-кодом, он воспринимает каждую черную полоску как последовательность единиц длины от одной до четырех и также воспринимает промежутки между полосами, но при этом вместо единиц сканер видит нули. Полностью весь штрих-код сканер воспринимает как последовательность из 95 цифр 0 или 1 (их давно уже принято называть битами). Что же содержит этот код? Он кодирует 13-разрядное десятичное число, совершенно открыто написанное под самим штрих-кодом. Если сканер не смог распознать штрих-код, то это число кассир вводит в аппарат вручную. Штрих-код нужен лишь для облегчения распознавания сканером изображения. Распознавать цифры, к тому же повернутые боком, может только сложная программа распознавания на универсальном компьютере, да и то не очень надежно, а не кассовый аппарат.

Какую же информацию содержит это 13-значное число? Этот вопрос к информатике никакого отношения не имеет. Первые две цифры задают страну – производителя товара. Следующие пять цифр – это код производитель, а следующие пять цифр – код самого продукта в принятой этим производителем кодировке. Последняя цифра – это код проверки. Он однозначно вычисляется по предыдущим 12 цифрам, следующим образом. Нужно сложить все цифры с нечетными номерами, утроить сумму, к ней прибавить сумму оставшихся цифр, а полученный результат вычесть из ближайшего кратного 10 числа.






Заключение


В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Особенно сильным это увлечение было с конца 16 до 19 века. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой. Даже по его просьбе была выбита медаль в честь этой «диадической» системы (так называли тогда двоичную систему счисления).

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

- ею пользуются только для ЭВМ;

- быстрый рост числа разрядов, необходимых для записи чисел.

Список использованной литературы


1. Андреева Е., Фалина И. Системы счисления и компьютерная арифметика. М.: Лаборатория базовых знаний, 2012 г.

2. Казиев В.М. Введение в информатику [Электронный ресурс] // http://www.intuit.ru/department/informatics/intinfo.

3. Фомин С.В. Системы счисления. М.: СОЛОН-Р, 2011г.

4. Информатика: Системы счисления: спецвыпуск, №42 2010.

5. Информатика: Семинар, №2, №3 2010.

6. Информатика: В мир информатики, №8 2011.

7. http://www.internet-school.ru/Enc.ashx?item=3773







hello_html_3c7a1fbb.gif

hello_html_67a5d5b.jpg
















лее рациональные подход к нашему делу. ниы не более чем сотенные купюры.колько конвертов, в которых и будет содержаться требуе























Двенадцатеричная система счисления

Рис. 1

"Вавилонская ", или шестидесятеричная, система счисления


Рhello_html_316922b7.jpgис. 2





Римская система счисления


hello_html_16a945f0.jpg


Рис. 3

Египетская нумерация


hello_html_2ea138b5.jpg

1. Как и большинство людей для счета небольшого количества предметов Египтяне использовали палочки.

hello_html_m9eef6d3.jpg

Если палочек нужно изобразить несколько, то их изображали в два ряда, причем в нижнем должно быть столько же палочек сколько и в верхнем, или на одну больше.

hello_html_m28be47d2.jpg

10. Такими путами египтяне связывали коров

hello_html_m28be47d2.jpghello_html_m28be47d2.jpghello_html_m28be47d2.jpg

Если нужно изобразить несколько десятков, то иероглиф повторяли нужное количество раз. Тоже самое относится и к остальным иероглифам.

hello_html_m499f18ec.jpg

100. Это мерная веревка, которой измеряли земельные участки после разлива Нила.

hello_html_627732ab.jpg

1 000. Вы когда-нибудь видели цветущий лотос? Если нет, то вам никогда не понять, почему Египтяне присвоили такое значение изображению этого цветка.

hello_html_5092492d.jpg

10 000. "В больших числах будь внимателен!" - говорит поднятый вверх указательный палец.

hello_html_m232d467f.jpg

100 000. Это головастик. Обычный лягушачий головастик.

hello_html_m7f602955.jpg

1 000 000. Увидев такое число обычный человек очень удивится и возденет руки к небу. Это и изображает этот иероглиф

hello_html_m7bc8d510.jpg

10 000 000. Египтяне поклонялись Амону Ра, богу Солнца, и, наверное, поэтому самое большое свое число они изобразили в виде восходящего солнца

Китайская нумерация


hello_html_m4ade687.jpg

1

hello_html_m19878f7e.jpg

6

hello_html_m3f7b241d.jpg

2

hello_html_m7f1dc9f8.jpg

7

hello_html_m334ccc2f.jpg

3

hello_html_51f76961.jpg

8

hello_html_538a4ccb.jpg

4

hello_html_477d5514.jpg

9

hello_html_m4c3da110.jpg

5

0

 

Записывались цифры числа начиная с больших значений и заканчивая меньшими. Если десятков, единиц, или какого-то другого разряда не было, то сначала ничего не ставили и переходили к следующему разряду. (Во времена династии Мин был введен знак для пустого разряда - кружок - аналог нашего нуля). Чтобы не перепутать разряды использовали несколько служебных иероглифов, писавшихся после основного иероглифа, и показывающих какое значение принимает иероглиф-цифра в данном разряде.




Название документа системы счисления.ppt

Системы счисления и их применение Выполнила: Акишева Алсу ученица 7 класса МБ...
Актуальность исследования: данная тема была выбрана, потому что понятие «числ...
Цель исследования: ознакомление с различными системами счисления рассмотрение...
Система счисления - способ представления числа символами некоторого алфавита,...
Системы счисления: двенадцатеричная
 «вавилонская» или шестидесятиричная римская
 египетская
 китайская 	1		6 	2		7 	3		8 	4		9 	5	 	0
Группы систем счисления Анатомического происхождения: десятеричная, пятерична...
Классификации систем счисления позиционные – величина обозначается цифрой и з...
Представление информации в ЭВМ обработка информации в ЭВМ основана на обмене...
Применение систем счисления решение задачи «Деньги в конвертах» «Книга переме...
Заключение В ходе изучения данной темы мы выяснили, что двоичная система счис...
Достоинства двоичной системы счисления наличие в системе всего лишь двух сим...
Список использованной литературы 1. Андреева Е., Фалина И. Системы счисления...
1 из 15

Описание презентации по отдельным слайдам:

№ слайда 1 Системы счисления и их применение Выполнила: Акишева Алсу ученица 7 класса МБ
Описание слайда:

Системы счисления и их применение Выполнила: Акишева Алсу ученица 7 класса МБОУ «Новоуспеновская СОШ» Руководитель: Аманжулова А.Ж. учитель информатики МБОУ «Новоуспеновская СОШ»

№ слайда 2 Актуальность исследования: данная тема была выбрана, потому что понятие «числ
Описание слайда:

Актуальность исследования: данная тема была выбрана, потому что понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Стало интересно узнать, кто стоит у истоков различных систем счисления, как давно и где их начали применять, почему двоичная система счисления сохранилась до наших дней.

№ слайда 3 Цель исследования: ознакомление с различными системами счисления рассмотрение
Описание слайда:

Цель исследования: ознакомление с различными системами счисления рассмотрение двоичной системы счисления

№ слайда 4 Система счисления - способ представления числа символами некоторого алфавита,
Описание слайда:

Система счисления - способ представления числа символами некоторого алфавита, которые называют цифрами

№ слайда 5 Системы счисления: двенадцатеричная
Описание слайда:

Системы счисления: двенадцатеричная

№ слайда 6  «вавилонская» или шестидесятиричная римская
Описание слайда:

«вавилонская» или шестидесятиричная римская

№ слайда 7  египетская
Описание слайда:

египетская

№ слайда 8  китайская 	1		6 	2		7 	3		8 	4		9 	5	 	0
Описание слайда:

китайская 1 6 2 7 3 8 4 9 5  0

№ слайда 9 Группы систем счисления Анатомического происхождения: десятеричная, пятерична
Описание слайда:

Группы систем счисления Анатомического происхождения: десятеричная, пятеричная, двенадцатеричная, двадцатеричная. Алфавитные: древнеармянская, древнегрузинская, древнегреческая, ионическая, славянская. Машинные: двоичная, восьмеричная, шестнадцатеричная. Прочие: Римская, Вавилонская, Египетская нумерация, Китайская нумерация и другие.

№ слайда 10 Классификации систем счисления позиционные – величина обозначается цифрой и з
Описание слайда:

Классификации систем счисления позиционные – величина обозначается цифрой и зависит от места цифры в числе. Так в числе 222 цифра 2 встречается трижды. Но самая правая означает две единицы, вторая справа – два десятка и, наконец, третья – две сотни непозиционные – значение числа определяется как сумма или разность цифр в числе. В непозиционных системах счисления считать трудно. Примером непозиционной системы счисления является римская система счисления

№ слайда 11 Представление информации в ЭВМ обработка информации в ЭВМ основана на обмене
Описание слайда:

Представление информации в ЭВМ обработка информации в ЭВМ основана на обмене электрическими сигналами между различными устройствами машины. Эти сигналы возникают в определенной последовательности. Признак наличия сигнала можно обозначить цифрой 1, признак отсутствия – цифрой 0. Таким образом, в ЭВМ реализуются два устойчивых состояния. С помощью определенных наборов цифр 0 и 1 можно закодировать любую информацию. Каждый такой набор нулей и единиц называется двоичным кодом

№ слайда 12 Применение систем счисления решение задачи «Деньги в конвертах» «Книга переме
Описание слайда:

Применение систем счисления решение задачи «Деньги в конвертах» «Книга перемен» «Азбука Морзе» алфавитное кодирование, штрих коды и их использование

№ слайда 13 Заключение В ходе изучения данной темы мы выяснили, что двоичная система счис
Описание слайда:

Заключение В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой.

№ слайда 14 Достоинства двоичной системы счисления наличие в системе всего лишь двух сим
Описание слайда:

Достоинства двоичной системы счисления наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы из любой системы счисления можно перейти к двоичному коду почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления Недостатки двоичной системы счисления ею пользуются только для ЭВМ быстрый рост числа разрядов, необходимых для записи чисел

№ слайда 15 Список использованной литературы 1. Андреева Е., Фалина И. Системы счисления
Описание слайда:

Список использованной литературы 1. Андреева Е., Фалина И. Системы счисления и компьютерная арифметика. М.: Лаборатория базовых знаний, 2012 г. 2. Казиев В.М. Введение в информатику [Электронный ресурс] // http://www.intuit.ru/department/informatics/intinfo. 3. Фомин С.В. Системы счисления. М.: СОЛОН-Р, 2011г. 4. Информатика: Системы счисления: спецвыпуск, №42 2010. 5. Информатика: Семинар, №2, №3 2010. 6. Информатика: В мир информатики, №8 2011. 7. http://www.internet-school.ru/Enc.ashx?item=3773



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Краткое описание документа:

Материал содержит исследовательскую работу , презентацию и доклад по теме "Системы счисления", участвовавшие в научно-практической конференции "Здравствуй, мир!" Работу под моим руководством выполнила ученица 7 класса МБОУ "Новоуспеновская СОШ" Акишева Алсу. Это наш первый опыт в написании исследовательских работ, но думаю он будет полезен для начинающих исследователей.

Автор
Дата добавления 09.11.2015
Раздел Информатика
Подраздел Другие методич. материалы
Просмотров1218
Номер материала ДВ-140136
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх