Инфоурок / Математика / Научные работы / Исследовательская работа (реферативная) по теме "Вероятность успешного решения тестового задания путём угадывания правильного ответа"
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Исследовательская работа (реферативная) по теме "Вероятность успешного решения тестового задания путём угадывания правильного ответа"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Межшкольная научно-практическая конференция учащихся

«В науку – шаг за шагом»






Вероятность успешного решения тестового задания путём угадывания правильного ответа





Выполнила: ученица 9 класса

МКОУСОШ с. Лучки

Лучко Ангелина



Руководитель:

Новосад Галина Степановна,

учитель математики первой

категории



Хороль, 2016г

Оглавление

Введение _____________________________________________________3

Глава 1. Теория вероятностей ___________________________________5

1.1. Из истории становления теории вероятности __________________5

1.2. Определение и основные формулы «Теории вероятности» ____ __ 5

Глава 2. Вероятность в нашей жизни________ ______________________7

Глава 3. Практическая часть.

3.1. Определение вероятности успешного решения тестового задания

по алгебре путём угадывания верного ответа.________________________8

3.2. Вероятность сдачи экзамена по обществознанию угадыванием

верного ответа_________________________________________________ 9

Заключение ___________________________________________________11

Список использованных источников и литературы______________________12

Приложения __________________________________________________13





























Введение

Случай, случайность – с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная ошибка, угадал или не угадал правильный ответ в тесте, результаты выборов и референдумов.… Этот ряд можно продолжить и дальше. Казалось бы, тут нет места для математики, – какие уж законы в царстве Случая! Но и здесь вездесущая царица наук – математика – может обнаружить интересные закономерности и спрогнозировать результат.

Цель моего исследования: доказать с помощью математики, что вероятность угадать верные ответы в тестовом задании очень мала, а значит практически невозможно получить положительную оценку без подготовки.

Для этого я поставила перед собой задачи:

1.   Воспользовавшись различными источниками информации собрать, изучить и систематизировать материал о теории вероятностей.

2. Рассмотреть использование теории вероятности в различных сферах жизнедеятельности.

3. Провести исследование по определению вероятности получения положительной оценки при решении тестового задания по алгебре.

Выдвинула гипотезу: выбор ответов наугад не может обеспечить успешного решения тестового задания.

Объектом моего исследования являются задания с выбором ответа из предложенных, а предметом – вероятности угадывания верных ответов в тестовом задании по алгебре и по предмету «Обществознание» государственной итоговой аттестации в 9 классе.

Методы  исследования: изучение литературы, сбор информации, расчёт, анализ, систематизация, обобщение.

При проведении исследовательской работы я использовала теоретический материал из учебника «Алгебра и начала анализа» для 10-11 классов  под редакцией Ш.А.Алимова, где дается определение теории вероятностей, как раздела математики, который «занимается исследованием закономерностей в массовых явлениях». В книге Колмогорова А.Н. «Введение в теорию вероятностей» на простых примерах рассматриваются основные понятия и теоремы теории вероятностей, что помогло самостоятельно овладеть первоначальными понятиями и методами теории вероятностей. О Бернулли, как одном из основателей теории вероятностей, его формуле и историю становления теории вероятностей изложено в Википедии.




































Глава 1. Теория вероятностей


    1. Из истории становления теории вероятности


Корни теории вероятностей уходят далеко вглубь веков. Известно, что в древнейших государствах Китае, Индии, Египте, Греции уже использовались некоторые элементы вероятностных рассуждений для переписи населения, и даже определения численности войска неприятеля.

Первые работы по теории вероятностей, принадлежащие французским учёным Б. Паскалю и П. Ферма, голландскому учёному X. Гюйгенсу, появились в связи с подсчётом различных вероятностей в азартных играх. Крупный успех теории вероятностей связан с именем швейцарского математика Я. Бернулли (1654-1705гг.). Он открыл знаменитый закон больших чисел: дал возможность установить связь между вероятностью какого-либо случайного события и частотой его появления, наблюдаемой непосредственно из опыта [Интернет-ресурсы, 1].


    1. Определение и основные формулы «Теории вероятности»


Основным понятием теории вероятностей является вероятность. Это слово достаточно часто применяется в повседневной жизни. Думаю, каждому знакомы фразы: «Завтра, вероятно, выпадет снег», или «вероятнее всего в выходные я поеду на природу». В  словаре С.И.Ожегова дается толкование слова вероятность как  «возможности осуществления чего-нибудь»[6].

Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними [1]. Вероятность наступления достоверного события характеризуется как стопроцентная, а вероятность наступления невозможного события характеризуется как нулевая.

А как подсчитать вероятность случайного события? Ведь если случайное, значит, не подчиняется закономерностям, алгоритмам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности.

Настоящую научную основу теории вероятностей заложил великий математик Якоб Бернулли (1654-1705).

Схема Бернулли описывает эксперименты со случайным исходом, заключающиеся в следующем. Проводятся n последовательных независимых одинаковых экспериментов, в каждом из которых выделяется одно и то же событие А, которое может наступить или не наступить в ходе эксперимента. Так как испытания одинаковы, то в любом из них событие А наступает с одинаковой вероятностью. Обозначим ее р = Р(А). Вероятность дополнительного события обозначим q. Тогда q = P(Ā) = 1-p

Формула для вычисления вероятности записывается так:


Р=

число всех исходов


Формула Бернулли:



Pn(m) = P (событие A наступило m раз в n испытаниях).


Правила

1)

2) Для достоверного события m=n и P(a)=1.

3) Для невозможного события m=0 и P(a)=0.

Следует всегда помнить следующие слова А.Н. Колмогорова: «Наше представление… было бы только иллюзией, если бы данные опыта не подтверждали правоту сделанных предположений… Наличие у события А при определенных условиях вероятности, равной Р, проявляется в том , что почти в каждой, достаточно длинной серии испытаний частота события А приблизительно равна Р» [3]

1.3. Вероятность в нашей жизни

Игры в кости

Кости — одна из древнейших игр. Инструментом для игры являются кубики (кости) в количестве от одного до пяти в зависимости от вида игры.

Суть игры состоит в выбрасывании кубиков и дальнейшем подсчёте очков, количество которых и определяет победителя. Разновидности игры предполагают разный подсчёт очков.

Коды на сейфах, телефонные номера, пароль в социальных сетях

Лотереи

Лотерея - организованная игра, при которой распределение выгод и убытков зависит от случайного извлечения того или иного билета или номера (жребия, лота). Кто из нас не мечтал выиграть в лотерею миллион! Но все мы реалисты, и понимаем, что вероятность такого выигрыша очень мала.

Карточные игры

Карточная игра — игра с применением игральных карт, характеризуется случайным начальным состоянием, для определения которого используется набор карт (колода).

Важным принципом практически всех карточных игр является случайность порядка карт в колоде. Перед использованием той же колоды в следующей игре карты в ней перемешиваются (перетасовываются).

Игровые автоматы

Известно, что в игровых автоматах скорость вращения барабанов зависит от работы микропроцессора, повлиять на который нельзя. Но можно вычислить вероятность выигрыша на игровом автомате, в зависимости от количества символов на нем, числа барабанов и других условий. Однако выиграть это знание вряд ли поможет. Тут все решает Её величество Удача.






Глава 3. Практическая часть


3.1. Определение вероятности успешного решения тестового задания по алгебре путём угадывания верного ответа.

Я провёла опрос среди учащихся 7-9 классов: можно ли угадать 6 заданий из 10, таким образом, решив тестовое задание по математике без подготовки.

Результаты такие: 80% учащихся 7 класса считают, что можно угадать 6 заданий из 10, 8кл. - 60%, 9кл. - 33%. Чем старше класс, тем меньше веры в случай.

Определить вероятность угадывания верного ответа можно по формуле Бернулли.

Пусть событие А – это правильно выбранный ответ из четырех предложенных в одном задании теста. Вероятность события А определена как отношение числа случаев, благоприятствующих этому событию (т.е. правильно угаданный ответ, а таких случаев 1), к числу всех случаев (таких случаев 4).

Тогда p=1/4, а q=1-p=3/4.

Вероятность получения положительной оценки:

Р10 (6) = С10 6 р6 q10-6 , где hello_html_12c6c518.png

= = 2*3*4*7= 168

Р10 (6)=168 * = 0,012977000976563 0,013

То есть, вероятность благополучного исхода очень низкая, примерно 1,3%

Я решила проверить это на практике. Учащимся 7-11 классов были розданы тестовые задания по алгебре. В тесте 10 заданий с выбором ответа. Один ответ из 4-х верный. Чтобы получить положительную оценку необходимо правильно угадать 6 ответов (60%). Результаты эксперимента показывают, что угадал 6 ответов только один ученик (Приложение 1)

Значит, данные теории вероятностей и эксперимента показывают, что способом угадывания правильного ответа в тестовом задании получить положительную отметку почти невозможно.

3.2. Вероятность сдачи экзамена по обществознанию угадыванием верного ответа.


Среди нерадивых учеников часто возникает вопрос: «А нельзя ли выбрать наугад ответ и при этом получить положительную оценку за экзамен?»

Кроме того при анализе результатов предыдущего эксперимента некоторые учащиеся сказали, что по математике сложно угадать верный ответ, а вот по обществознанию значительно легче.

На сайте ФИПИ я взяла демоверсию экзамена по обществознанию в 9 классе. Согласно шкале перевода баллов в отметки ОГЭ 2016 г, получить положительную оценку по обществознанию можно начиная с 15 баллов. В первой части экзамена 20 заданий с выбором ответа по 1 баллу за каждое задание.

Посчитаем вероятность получения положительной оценки на экзамене по обществознанию по формуле Бернулли.

Вероятность получения положительной оценки:

= = 15504


0,000003*100%=0,0003%

Вероятность равна 0, 0003%

Правильность полученных результатов проверила путем проведения статического эксперимента – предложила учащимся 7-9 классов наугад выбрать ответ в 1 части экзаменационной работы по обществознанию и получила следующие результаты (Приложение 2)

Из 17 участников эксперимента только 1 ученик угадал 9 правильных ответов, что на даёт возможности пройти минимальный порог на экзамене по обществознанию.

Исход эксперимента подтвердил правильность полученных нами результатов.

При проведении эксперимента процент правильно угаданных ответов при написании тестовой работы по предмету «Обществознание» (28%) был выше, чем при решении тестового задания по алгебре (15%). Это, возможно, связано с тем, что обучающиеся опирались на те знания, которые они получили на уроках и в повседневной жизни. Им было легче сориентироваться при выборе ответа, на уровне подсознания.



































Заключение


Я думаю, что цель моей работы – доказать с помощью математики, что вероятность угадать верные ответы в тестовом задании очень мала, достигнута.

Проведение статистических исследований подтвердило гипотезу: выбор ответов наугад не может обеспечить успешного решения тестового задания, так как вероятность угадывания правильного ответа и частота угадывания мало отличаются друг от друга.

Полученные данные позволяют сделать вывод, что только планомерная, вдумчивая и добросовестная учеба в школе позволит учащимся успешно писать тестовые контрольные работы, хорошо подготовиться к участию в государственной итоговой аттестации.

На примере моей работы можно сделать и более общие выводы: подальше держаться от всяких лотерей, казино, карт, азартных игр вообще. Всегда надо подумать, оценить степень риска, выбрать наилучший из возможных вариантов – это, я думаю, пригодится мне в дальнейшей жизни.



























Список использованных источников и литературы

  1. Алимов Ш.А. Алгебра и начала математического анализа.10-11 классы: учебник для общеобразовательных учреждений: базовый уровень. М.:Просвещение,2010

  2. Колмогоров А.Н., Журбенко И.Г., Прохоров А.В.Введение в теорию вероятностей. – Москва: Наука, 1982г.,-160с

  3. Кордемский Б.А. Математика изучает случайности. - Москва: Прсвещение,1975г.,- 225с

  4. Макарычев Ю.Н. Алгебра: элементы статистики и теории вероятностей: учебное пособие для учащихся 7 – 9кл. общеобразовательных учреждений.– Москва: Просвещение, 2005, - 187с

  5. Макарычев Ю.Н., Миндюк Н.Г. и др Алгебра. 9 класс. Учебник. – Москва: Просвещение, 2014г.,- 271с

  6. Ожегов С.И. Словарь русского языка:.М.:Рус.яз.,1989



Интернет ресурсы

1. http://ru.wikipedia.org/wiki/Бернулли,_Якоб – о Якобе Бернулли

2. http://clubmt.ru/lec4/lec4.htm - о формуле Бернулли

3. www.fipi.ru

















Приложение 1



Результаты статистического эксперимента: выбор учащимися 7-11 классов правильного ответа в тесте по алгебре.



0

отв.

1

отв.

2

отв.

3

отв.

4

отв.

5

отв.

6

отв.

7

и более

7

5

1

1

2

1

0

0

0

0

8

6

1

0

3

1

0

0

1

0

9

6

0

1

4

1

0

0

0

0

10+11

7

1

2

2

1

1

0

0

0

Всего

24

3

4

11

4

1

0

1

0



Процент правильно угаданных ответов - 15%

Выбор правильных ответов по алгебре





















Приложение 2

Результаты статистического эксперимента: выбор учащимися 7-9 классов правильного ответа в тесте по обществознанию.



0

отв.

1

отв.

2

отв.

3

отв.

4

отв.

5

отв.

6

отв.

7

отв.

8

отв.

9

отв.

10 и более

7

5

0

0

0

1

2

1

1

0

0

0

0

8

6

0

0

0

0

2

1

2

1

0

0

0

9

6

0

0

0

0

2

1

1

0

1

1

0

Всего

17

0

0

0

1

6

3

4

1

1

1

0



Процент правильно угаданных ответов - 28%



Выбор правильных ответов по обществознанию

Общая информация

Номер материала: ДБ-186200

Похожие материалы