339740
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыИтоговая контрольная работа по геометрии 10 класс по учебнику Л.С. Атанасяна

Итоговая контрольная работа по геометрии 10 класс по учебнику Л.С. Атанасяна

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Контрольная работа рассчитана на два урока по 40 – 45 минут, содержит 4 разноуровневых варианта: варианты 1 и 2 предназначены менее подготовленным ученикам, варианты 3 и 4 обучающимся на хорошо и отлично.

Задача №1 по готовому чертежу на доказательство с применением теоремы о трёх перпендикулярах или обратной ей.

Цель: проверка умений применять полученные знания по основным темам курса геометрии 10 класса.




Итоговая контрольная работа

по геометрии. 10 кл. (УМК Л.С. Атанасян и др.)

ВАРИАНТ 1.



  1. а Дано: а (АВС),

М АВС – прямоугольный,

С= 90˚

В Доказать: МСВ -

А прямоугольный.

С



  1. АВСDA1B1C1D1 – правильная призма. АВ = 6см, АА1= 8см.

Найти угол между прямыми АА1 и ВС; площадь полной поверхности призмы.



  1. В правильной треугольной пирамиде сторона основания равна 2см, а высота равна 2 см. Найти угол наклона бокового ребра к плоскости основания. Ответ запишите в градусах.



  1. Основание прямой призмы – треугольник со сторонами 5 см и 3 см и углом в 120˚ между ними. Наибольшая из площадей боковых граней равна 56 см2. Найти площадь полной поверхности призмы.











Итоговая контрольная работа

по геометрии. 10 кл. (УМК Л.С. Атанасян и др.)

ВАРИАНТ 2.

а

  1. М Дано: ABCD – ромб,

В С АС ВD = О,

а (АВС).

Доказать: МО ВD.

OOOОО

А D


  1. АВСDA1B1C1D1 – правильная призма. Площадь её полной поверхности равна 210 м2, а площадь боковой поверхности 160 м2. Найти сторону основания и высоту призмы.


  1. В правильной четырёхугольной пирамиде со стороной основания 6 см и длиной бокового ребра см найти косинус угла наклона бокового ребра к плоскости основания и площадь боковой поверхности.



  1. Стороны основания прямого параллелепипеда равны 8 см и 15 см и образуют угол в 60˚. Меньшая из площадей диагональных сечений равна 130 см2. Найти площадь полной поверхности параллелепипеда.

















Итоговая контрольная работа

по геометрии. 10 кл. (УМК Л.С. Атанасян)

ВАРИАНТ 3.



  1. а Дано: ABCD -

М параллелограмм,

В С а (АВС),

МА АD.

Доказать:

А D ABCD – прямоугольник.



  1. В прямой призме основанием является параллелограмм со сторонами 4 м и 5 м и углом между ними 30˚. Найти площади боковой и полной поверхностей призмы, если её высота равна

7 м.


  1. В правильной четырёхугольной пирамиде РАВСD сторона основания АВ = 10 см, высота РH = 5 см. Найти угол наклона бокового ребра пирамиды к плоскости её основания; площадь сечения, проходящего через высоту и боковое ребро.


  1. Основанием прямой призмы АВСА1В1С1 является равнобедренный треугольник АВС с основанием АС, причём АВ = 6 см, угол В равен 120˚, боковое ребро СС1 = 8 см. Найти площадь сечения А1С1В;

*б) тангенс угла наклона плоскости (А1С1В) к плоскости (АСС1).















Итоговая контрольная работа

по геометрии. 10 кл. (УМК Л.С. Атанасян и др.)

ВАРИАНТ 4.



а Дано: а (АВС),

  1. М MD ВС,

В D – середина ВС.

D Доказать: АВ = АС

А

С


  1. В прямоугольном параллелепипеде длина диагонали 4см, длины его измерений относятся как 1: 2 : 4. Найти площадь полной поверхности параллелепипеда.


  1. В правильной четырёхугольной пирамиде сторона основания равна 4 м, а высота равна 2 м. Найти угол наклона боковой грани к плоскости основания; площадь полной поверхности пирамиды.



  1. Основанием пирамиды МАВСD является прямоугольник АВСD со сторонами АВ = 5 см и AD = 12 см. Боковое ребро МА перпендикулярно к плоскости основания пирамиды и равно 4 см. Найти угол наклона ребра МС к плоскости ABCD. *б) Постройте сечение пирамиды плоскостью, параллельной плоскости основания и проходящей через точку F на ребре МА, MF : FA = 1 : 3. Найдите площадь сечения.























































Общая информация

Номер материала: ДБ-105983

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.