Логотип Инфоурока

Получите 30₽ за публикацию своей разработки в библиотеке «Инфоурок»

Добавить материал

и получить бесплатное свидетельство о размещении материала на сайте infourok.ru

Инфоурок Начальные классы Рабочие программыКалендарно-тематическое планирование по математике 4 класс гармония

Календарно-тематическое планирование по математике 4 класс гармония


Муниципальное бюджетное образовательное учреждение

Кисловская средняя общеобразовательная школа






Рассмотрено на МО учителей

_____________________

Протокол №___от _____20__г.

Руководитель МО

_______________Орлова Т. Н.

Согласовано

зам. директора по УР

_________Шорхина А.М.

« ___» _________ 20___г.

Утверждаю

директор

___________Гришина С.С.

« ___» _________ 20____г.











РАБОЧАЯ ПРОГРАММА

по математике УМК «Гармония»


в 4 классе














Программу составила

Пешехонова Людмила Борисовна, учитель начальных классов





2014 – 2015 учебный год

Раздел 1. Пояснительная записка.


Рабочая программа разработана на основе авторской программы Н.Б.Истоминой «Математика», рекомендованной Министерством образования Российской Федерации в соответствии с требованиями Федерального государственного стандарта начального общего образования.

Цель начального курса математики - обеспечить предметную подготовку учащихся, достаточную для продолжения математического образования в основной школе, и создать дидактические условия для овладения учащимися универсальными учебными действиями (личностными, познавательными, регулятивными, коммуникативными) в процессе усвоения предметного содержания.  

Для достижения этой цели необходимо организовать учебную деятельность учащихся с    учетом специфики предмета (математика), направленную:

- на формирование познавательного интереса к учебному предмету «Математика»: словесно-логическое мышление, произвольная смысловая память, произвольное внимание, планирование и умение действовать во внутреннем плане, знаково–символическое мышление, с опорой на наглядно – образное и предметно - действенное мышление.

- на развитие пространственного воображения,  потребности и способности к интеллектуальной деятельности; на формирование умений: строить рассуждения, аргументировать высказывания, различать обоснованные и необоснованные суждения, выявлять закономерности, устанавливать причинно – следственные связи, осуществлять анализ различных математических объектов, выделяя их существенные и несущественные признаки.

- на овладение в процессе усвоения предметного содержания обобщенными видами деятельности: анализировать, сравнивать, классифицировать математические объекты (числа, величины, числовые выражения), исследовать их структурный состав (многозначные числа, геометрические фигуры), описывать ситуации, с использованием чисел и величин, моделировать математические отношения и зависимости, прогнозировать результат вычислений, контролировать правильность и полноту выполнения алгоритмов арифметических действий, использовать различные приемы проверки нахождения значения числового выражения (с опорой на правила, алгоритмы, прикидку результата), планировать решение задачи, объяснять (пояснять, обосновывать) свой способ действия, описывать свойства геометрических фигур, конструировать и изображать их модели.

В результате обучения математике реализуются следующие цели:

- развитие образного и логического мышления, воображения; формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач, продолжения образования;

- освоение основ математических знаний, формирование первоначальных представлений о математике;

- воспитание интереса к математике, стремления использовать математические знания в повседневной жизни.

Исходя из общей цели, стоящей перед обучением в модели «Гармония»,  решаются следующие задачи:

- способствовать продвижению ученика в общем развитии, становлению нравственных позиций личности ребенка, не вредить его здоровью;

- дать представление о математике как науке, обобщающей существующие и происходящие в реальной жизни явления и способствующей тем самым познанию окружающего мира, созданию его широкой картины;

- сформировать знания, умения и навыки, необходимые ученикам в жизни и для успешного продолжения обучения в основном звене школы.

Место курса в учебном плане соответствует утвержденному учебному плану образовательного учреждения. На изучение математики  в 4 классах выделяется 136 часов.

Основное содержание обучения представлено крупными разделами. Контроль за уровнем достижений учащихся   производится в форме письменных работ: контрольных работ – 8;

тестов – 10; математических диктантов – 3; проверочных работ – 2.

Раздел 2. Общая характеристика учебного предмета

В основе начального курса математики лежит методическая концепция, которая выражает необходимость целенаправленного и систематического формирования приемов умственной деятельности: анализа и синтеза, сравнения, классификации, аналогии и обобщения в процессе усвоения математического содержания. Овладев этими приемами, учащиеся могут не только самостоятельно ориентироваться в различных системах знаний, но и эффективно использовать их для решения практических и жизненных задач. Концепция обеспечивает преемственность дошкольного и начального образования, учитывает психологические особенности младших школьников и специфику учебного предмета «Математика», который является испытанным и надежным средством интеллектуального развития учащихся, воспитания у них критического мышления и способности различать обоснованные и необоснованные суждения.

Нацеленность курса математики на формирование приемов умственной деятельности позволяет на методическом уровне (с учетом специфики предметного содержания и психологических особенностей младших школьников) реализовать в практике обучения системно-деятельностный подход, ориентированный на компоненты учебной деятельности (познавательная мотивация, учебная задача, способы ее решения, самоконтроль и самооценка), и создать дидактические условия для овладения универсальными учебными действиями (личностными, познавательными, регулятивными, коммуникативными), которые необходимо рассматривать как целостную систему, так как происхождение и развитие каждого действия определяется его отношением с другими видами учебных действий, в том числе и математических, что и составляет сущность понятия «умение учиться».

Достижение основной цели начального образования – формирования у детей умения учиться – требует внедрения в школьную практику новых способов (методов, средств, форм) организации процесса обучения и современных технологий усвоения математического содержания, которые позволяют не только обучать математике, но и воспитывать математикой, не только учить мыслям, но и учить мыслить.

В связи с этим в начальном курсе математики реализован целый ряд методических инноваций, связанных с логикой построения содержания курса, с формированием вычислительных навыков, с обучением младших школьников решению задач, с разработкой системы заданий и пр., которые создают дидактические условия для формирования предметных и метапредметных умений в их тесной взаимосвязи. Особенностью курса является логика построения его содержания. Курс математики построен по тематическому принципу. Каждая следующая тема органически связана с предшествующими, что позволяет осуществлять повторение ранее изученных понятий и способов действия в контексте нового содержания. Это способствует формированию у учащихся представлений о взаимосвязи изучаемых вопросов, помогает им осознать какими знаниями и видами деятельности (универсальными и предметными) они уже овладели, а какими пока еще нет, что оказывает положительное влияние на познавательную мотивацию учащихся и целенаправленно готовит их к принятию и осознанию новой учебной задачи, которую сначала ставит учитель, а в последствии и сами дети. Такая логика построения содержания курса создает условия для совершенствования УУД на различных этапах усвоения предметного содержания и способствует развитию у учащихся способности самостоятельно применять УУД для решения практических задач, интегрирующих знания из различных предметных областей.

Основным средством формирования УУД в курсе математики являются вариативные по формулировке учебные задания (объясни, проверь, оцени, выбери, сравни, найди закономерность, верно ли утверждение, догадайся, наблюдай, сделай вывод и т.д.), которые нацеливают учащихся на выполнение различных видов деятельности, формируя тем самым умение действовать в соответствии с поставленной целью. Учебные задания побуждают детей анализировать объекты с целью выделения их существенных и несущественных признаков; выявлять их сходство и различие; проводить сравнение и классификацию по заданным или самостоятельно выделенным признакам (основаниям); устанавливать причинно следственные связи; строить рассуждения в форме связи простых суждений об объекте, его структуре, свойствах; обобщать, т.е. осуществлять генерализацию для целого ряда единичных объектов на основе выделения сущностной связи.

Вариативность учебных заданий, опора на опыт ребенка, включение в процесс обучения математике содержательных игровых ситуаций для овладения учащимися универсальными и предметными способами действий, коллективное обсуждение результатов самостоятельно выполненных учениками заданий оказывает положительное влияние на развитие познавательных интересов учащихся и способствует формированию у них положительного отношения к школе (к процессу познания).

Эффективным методическим средством для формирования универсальных учебных действий (личностных, познавательных, регулятивных, коммуникативных) является включение в учебник заданий, содержащих диалоги, рассуждения и пояснения персонажей Миши и Маши. Эти задания выполняют различные функции: их можно использовать для самоконтроля; для коррекции ответов Миши и Маши, которые могут быть один – верным, другой – неверным, оба верными, но неполными, требующими дополнений; для получения информации; для овладения умением вести диалог, для разъяснения способа решения задачи и пр. В результате чтения, анализа и обсуждения диалогов и высказываний Миши и Маши учащиеся не только усваивают предметные знания, но и приобретают опыт построения понятных для партнера высказываний, учитывающих, что партнер знает и видит, а что – нет, задавать вопросы, использовать речь для регуляции своего действия, формулировать собственное мнение и позицию, контролировать действия партнера, использовать речь для регуляции своего действия, строить монологическую речь, владеть диалоговой формой речи.

В основе составления учебных заданий лежат идеи изменения, соответствия, правила и зависимости. С точки зрения перспективы математического образования вышеуказанные идеи выступают как содержательные компоненты обучения, о которых у младших школьников формируются общие представления, которые являются основой для дальнейшего изучения математических понятий и для осознания закономерностей и зависимостей окружающего мира.

Особенностью курса является использование калькулятора как средства обучения младших школьников математике, обладающего определенными методическими возможностями. Калькулятор можно применять для постановки учебных задач, для открытия и усвоения способов действий, для проверки предположений и числового результата, для овладения математической терминологией и символикой, для выявления закономерностей и зависимостей, то есть использовать его для формирования УУД.

Формирование универсальных учебных действий (личностных, познавательных, регулятивных и коммуникативных) осуществляется в учебнике при изучении всех разделов начального курса математики: 1) Признаки предметов. Пространственные отношения. 2) Числа и величины. 3) Арифметические действия. 4) Текстовые задачи. 5) Геометрические фигуры. 6) Геометрические величины. 7) Работа с информацией. 8) Уравнения и буквенные выражения. Содержание разделов 1- 7 распределяется в курсе математики по классам и включается в различные темы в соответствии с логикой построения содержания курса, которая учитывает преемственность и взаимосвязь математических понятий, способов действий и психологию их усвоения младшими школьниками.

Раздел 8 завершает курс математики начальных классов. Включение данного раздела в предметное содержание курса обуславливается тем, что он предоставляет учащимся возможность познакомиться с новыми математическими понятиями (уравнения и буквенные выражения) и повторить весь ранее изученный материал в курсе математики начальных классов на более высоком уровне обобщения, применив для этого освоенные способы учебной деятельности.

Раздел «Работа с информацией» является неотъемлемой частью каждой темы начального курса математики. В соответствии с логикой построения курса учащиеся учатся понимать информацию, представленную различными способами (рисунок, текст, графические и символические модели, схема, таблица, диаграмма), использовать информацию для установления количественных и пространственных отношений, причинно - следственных связей. В процессе решения задач и выполнения различных учебных заданий ученики учатся понимать логические выражения, содержащие связки «и», «или», «если, то…», «верно /неверно, что…», «каждый», «все», «некоторые» и пр. Другими словами, процесс усвоения математики так же органически включает в себя информационное направление .

как пропедевтику дальнейшего изучения информатики. Направленность курса на формирование приемов умственной деятельности (анализ и синтез, сравнение, классификация, аналогия, обобщение) в процессе усвоения математического содержания обеспечивает развитие алгоритмического и логического мышления, формирует у младших школьников представление о моделировании, что оказывает положительное влияние на формирование УУД. При этом сохраняется приоритет арифметической линии начального курса математики как основы для продолжения математического образования в 5-6 классах.

На всех этапах усвоения математического содержания (кроме контроля) приоритетная роль отводится обучающим заданиям. Они могут выполняться как фронтально, так и в процессе самостоятельной работы учащихся в парах или индивидуально. Важно, чтобы полученные результаты самостоятельной работы (как верные, так и неверные) обсуждались коллективно и создавали условия для общения детей не только с учителем, но и друг с другом, что важно для формирования коммуникативных универсальных учебных действий (умения слышать и слушать друг друга, учитывать позицию собеседника и т. д.).

В процессе такой работы у учащихся формируются умения: контролировать, оценивать

свои действия и вносить соответствующие коррективы в их выполнение. При этом необходимо, чтобы учитель активно включался в процесс обсуждения. Для этой цели могут быть использованы различные методические приемы: организация целенаправленного наблюдения; анализ математических объектов с различных точек зрения; установление соответствия между предметной - вербальной - графической - символической моделями; предложение заведомо неверного способа выполнения задания - «ловушки»; сравнение данного задания с другим, которое представляет собой ориентировочную основу; обсуждение различных способов действий.

Особенностью курса является новый методический подход к обучению решению задач, который сориентирован на формирование обобщенных умений: читать задачу, выделять условие и вопрос, устанавливать взаимосвязь между ними и, используя математические понятия, осуществлять перевод вербальной модели (текст задачи) в символическую (выражения, равенства, уравнения).

Технология обучения решению текстовых задач арифметическим способом, нашедшая отражение в учебнике, включает шесть этапов: 1)подготовительный, 2) задачи на сложение и вычитание, 3) смысл действия умножения, отношение «больше в…,4) задачи на сложение, вычитание, умножение, 5) смысл действия деления, отношения «меньше в…», кратного сравнения, 6) решение арифметических задач на все четыре арифметических действия (в том числе задачи, содержащие зависимость между величинами, характеризующими процессы: движения (скорость, время, расстояние), работы (производительность труда, время, объем работы), купли – продажи (цена товара, количество товара, стоимость), задачи на время (начало, конец, продолжительность события). Основная цель данной технологии - формирование общего умения решать текстовые задачи. При этом существенным является не отработка умения решать определенные типы задач, ориентируясь на данные образцы, а приобретение опыта в семантическом и математическом анализе разнообразных текстовых конструкций, то есть речь идет не только о формировании предметных математических умений, но и о формировании УУД.

Для приобретения этого опыта деятельность учащихся направляется специальными вопросами и заданиями, при выполнении которых они учатся сравнивать тексты задач, составлять вопросы к данному условию, выбирать схемы, соответствующие задаче, выбирать из данных выражений те, которые являются решением задачи, выбирать условия к данному вопросу, изменять текст задачи в соответствии с данным решением, формулировать вопрос к задаче в соответствии с данной схемой. и др.

В результате использования данной технологии большая часть детей овладевают умением самостоятельно решать задачи в 2 -3 действия, составлять план решения задачи, моделировать текст задачи в виде схемы, таблицы, самостоятельно выполнять аналитико-

синтетический разбор задачи без наводящих вопросов учителя, выполнять запись решения

арифметических задач по действиям и выражением, при этом учащиеся испытывают интерес к каждой новой задаче и выражают готовность и желание к решению более сложных текстовых задач ( в том числе логических, комбинаторных, геометрических).

Ценностные ориентиры содержания курса «Математика»

Математика является важнейшим источником принципиальных идей для всех естественных наук и современных технологий. Владение математическим языком, алгоритмами, понимание математических отношений является средством познания окружающего мира, процессов и явлений, происходящих в природе и в обществе. Поэтому так важно сформировать интерес к математике у младших школьников, который станет основой для дальнейшего изучения данного предмета, для выявления и развития математических способностей учащихся и их способности к самообразованию.

Математическое знание – это особый способ коммуникации:

  • наличие знакового (символьного) языка для описания и анализа действительности;

  • участие математического языка как своего рода «переводчика» в системе научных коммуникаций, в том числе между разными системами знаний;

  • использование математического языка в качестве средства взаимопонимания людей с разным житейским и культурным опытом.

Овладение различными видами учебной деятельности в процессе обучения математике является основой изучения других учебных предметов, обеспечивая тем самым познание различных сторон окружающего мира. Успешное решение математических задач оказывает влияние на эмоционально – волевую сферу личности учащихся, развивает их волю и настойчивость, умение преодолевать трудности, испытывать удовлетворение от результатов интеллектуального труда.

В основе курса математики лежит методическая концепция, которая выражает необходимость целенаправленного и систематического формирования приемов умственной деятельности: анализа и синтеза, сравнения, классификации, аналогии и обобщения в процессе усвоения математического содержания.

Процесс усвоения математики включает в себя информационное направление как пропедевтику дальнейшего изучения информатики. Направленность курса на формирование приёмов умственной деятельности (анализ и синтез, сравнение, классификация, аналогия, обобщение) в процессе усвоения математического содержания обеспечивает развитие алгоритмического и логического мышления, формирует у младших школьников представление о моделировании, что оказывает положительное влияние на формирование УУД.

На всех этапах усвоения математического содержания (кроме контроля) приоритетная роль отводится обучающим заданиям. Они выполняются как фронтально, так и в процессе самостоятельной работы учащихся в парах или индивидуально. Полученные результаты самостоятельной работы (как верные, так и неверные) обсуждаются коллективно и создают условия для общения детей не только с учителем, но и друг с другом, что важно для формирования коммуникативных универсальных учебных действий (умения слышать и слушать друг друга, учитывать позицию собеседника и т. д.). В процессе такой работы у учащихся формируются умения: контролировать, оценивать свои действия и вносить соответствующие коррективы в их выполнение. Для этой цели используются следующие методические приёмы: организация целенаправленного наблюдения; анализ математических объектов с различных точек зрения; установление соответствия между предметной - вербальной - графической - символической моделями; предложение заведомо неверного способа выполнения задания - «ловушки»; сравнение данного задания с другим, которое представляет собой ориентировочную основу; обсуждение различных способов действий.


        Раздел 3. Содержание тем учебного курса


Четверть

Раздел

Всего часов

Кол-во контрольных работ

1 четверть

(8 н. * 4 ч. = 32 ч.)

Повторение материала 1, 2, 3 классов. Нумерация многозначных чисел

10

1

Умножение многозначного числа на однозначное

8


Деление с остатком

12

2

Умножение многозначных чисел

2


2 четверть

(8 н. * 4 ч. = 32 ч.)



Умножение многозначных чисел

11

1

Деление многозначных чисел

17

1

Доли и дроби

4


3 четверть

(10 н. * 4 ч. = 40 ч.)

Действия с величинами

18

1

Скорость движения

22

1

4 четверть

(8 н. * 4 ч. = 32 ч.)

Уравнения


4


Числовые и буквенные выражения

10

1

Повторение пройденного материала в 1- 4 классах

18

1

Всего:136 ч.


136

9


    




Раздел 4. Планируемые результаты по изучению учебного предмета

В результате изучения курса математики по данной программе у учащихся будут сформированы математические (предметные) знания, умения, навыки и представления, предусмотренные программой курса, а также личностные, регулятивные, познавательные, коммуникативные УУД как основа умения учиться.

В сфере личностных УД у учащихся будут сформированы: положительное отношение к школе; учебно-познавательный интерес к новому материалу и способам решения новой учебной задачи; готовность целенаправленно использовать математические знания, умения и навыки в учебной деятельности и в повседневной жизни; способность осознавать и оценивать свои мысли, действия и выражать их в речи (на доступном для возраста уровне), соотносить результат действия с поставленной целью; способность к организации самостоятельной учебной деятельности.

Изучение математики способствует формированию таких личностных качеств, как любознательность, трудолюбие, способность к организации своей деятельности и к преодолению трудностей, целеустремленность и настойчивость в достижении цели, умение слушать и слышать собеседника, обосновывать свою позицию, высказывать свое мнение.

Ученик получит возможность для формирования:

- внутренней позиции школьника на уровне понимания необходимости учения, выраженного в преобладании учебно-познавательных мотивов;

- устойчивого познавательного интереса к новым общим способам решения задач;

- адекватного понимания причин успешности или неуспешности учебной деятельности.


Метапредметные результаты изучения курса

(регулятивные, познавательные и коммуникативные УУД)


Регулятивные универсальные учебные действия

Ученик научится:

- принимать и сохранять учебную задачу и активно включаться в деятельность, направленную на её решение в сотрудничестве с учителем и одноклассниками;

- планировать свои действия в соответствии с поставленной задачей и условиями ее реализации, в том числе во внутреннем плане;

- различать способ и результат действия; контролировать процесс и результаты деятельности;

- вносить необходимые коррективы в действие после его завершения, на основе его оценки и учета характера сделанных ошибок;

- выполнять учебные действия в умственной форме;

- адекватно оценивать свои достижения, осознавать возникающие трудности и искать способы их преодоления.

Ученик получит возможность научиться:

• в сотрудничестве с учителем ставить новые учебные задачи;

• проявлять познавательную инициативу в учебном сотрудничестве;

• самостоятельно учитывать выделенные учителем ориентиры действия в новом учебном материале;

• осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия, актуальный контроль на уровне произвольного внимания;

• самостоятельно адекватно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как по ходу его реализации, так и в конце действия.

Познавательные универсальные учебные действия

Ученик научится:

- осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы;

- использовать знаково-символические средства, в том числе модели и схемы для решения задач;

- ориентироваться на разнообразие способов решения задач;

- осуществлять анализ объектов с выделением существенных и несущественных признаков;

- осуществлять синтез как составление целого из частей;

- проводить сравнение и классификацию по заданным критериям;

- устанавливать причинно-следственные связи;

- строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях;

- обобщать, т.е. осуществлять генерализацию и выведение общности для целого ряда или класса единичных объектов на основе выделения сущностной связи;

- осуществлять подведение под понятие на основе распознавания объектов, выделения существенных признаков и их синтеза;

- устанавливать аналогии;

- владеть общим приемом решения задач.

Ученик получит возможность научиться:

- создавать и преобразовывать модели и схемы для решения задач;

- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

- осуществлять синтез как составление целого из частей, самостоятельно достраивая и восполняя недостающие компоненты;

- осуществлять сравнение и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

- строить логическое рассуждение, включающее установление причинно-следственных связей;

- решать логические, комбинаторные, геометрические задачи;

- произвольно и осознанно владеть общим умением решать задачи.


Коммуникативные универсальные учебные действия

Ученик научится:

- выражать в речи свои мысли и действия;

- строить понятные для партнера высказывания, учитывающие, что партнер видит и знает, а что нет;

- задавать вопросы;

- использовать речь для регуляции своего действия.

Учащиеся получат возможность научиться:

- адекватно использовать речь для планирования и регуляции своего действия;

- аргументировать свою позицию и координировать её с позициями партнеров в совместной деятельности;

- осуществлять взаимный контроль и оказывать в сотрудничестве необходимую помощь.

Работа с информацией

Ученик научится:

• читать несложные готовые таблицы;

• заполнять несложные готовые таблицы;

• читать несложные готовые столбчатые диаграммы.

Ученик получит возможность научиться:

• читать несложные готовые круговые диаграммы;

• достраивать несложную готовую столбчатую диаграмму;

• сравнивать и обобщать информацию, представленную в строках и столбцах несложных таблиц;

• распознавать одну и ту же информацию, представленную в разной форме (таблицы, диаграммы, схемы);

• планировать несложные исследования, собирать и представлять полученную информацию с помощью таблиц и диаграмм;

• интерпретировать информацию, полученную при проведении несложных исследований (объяснять, сравнивать и обобщать данные, делать выводы и прогнозы).

Предметные результаты выпускника 4 класса начальной школы

Числа и величины


Ученик научится:

• читать, записывать, сравнивать, упорядочивать многозначные числа;

• устанавливать закономерность — правило, по которому составлена числовая последовательность, и составлять последовательность по заданному или самостоятельно выбранному правилу (увеличение/уменьшение числа на несколько единиц, увеличение числа в несколько раз);

• группировать числа по заданному или самостоятельно установленному признаку;

• читать и записывать величины (массу, время, длину, объем), используя основные единицы измерения величин и соотношении между ними, сравнивать названные величины, выполнять арифметические действия с этими величинами.

Ученик получит возможность научиться:

• классифицировать числа по одному или нескольким основаниям, объяснять свои действия;

• выбирать единицу для измерения данной величины (длины, массы, времени), объяснять свои действия.

Арифметические действия

Ученик научится:

• выполнять устно сложение, вычитание двузначных чисел в пределах 1000000, умножение однозначных, (в том числе с нулём и числом 1):

• выделять неизвестный компонент арифметического действия и находить его значение;

• вычислять значение числового выражения (со скобками и без скобок).

Ученик получит возможность научиться:

выполнять действия с величинами;

• использовать свойства арифметических действий для удобства вычислений;

• проводить проверку правильности вычислений (с помощью обратного действия, прикидки и оценки результата действия).


Работа с текстовыми задачами

Ученик научится:

• анализировать задачу, устанавливать зависимость между величинами, взаимосвязь между условием и вопросом задачи; определять количество и порядок действий для решения задачи, выбирать и объяснять выбор действий;

• решать учебные задачи и задачи, связанные с повседневной жизнью, арифметическим способом (в 2—3 действия);

• оценивать правильность хода решения и реальность ответа на вопрос задачи.

Ученик получит возможность научиться:

• решать задачи в 3—4 действия;

• находить разные способы решения задач;

• решать логические и комбинаторные задачи, используя рисунки.


Пространственные отношения.

Геометрические фигуры

Ученик научится:

• описывать взаимное расположение предметов в пространстве и на плоскости;

• распознавать, называть, изображать геометрические фигуры (точка, отрезок, ломаная, прямой угол, многоугольник, треугольник, прямоугольник, квадрат, окружность, круг);

• выполнять построение геометрических фигур с заданными измерениями (отрезок, квадрат, прямоугольник) с помощью линейки, угольника;

• использовать свойства прямоугольника и квадрата для решения задач;

• распознавать и называть геометрические тела (куб, шар);

• соотносить реальные объекты с моделями геометрических фигур.

Ученик получит возможность научиться:

распознавать плоские и кривые поверхности;

распознавать плоские и объёмные геометрические фигуры;

распознавать, различать и называть геометрические тела: параллелепипед, пирамиду, цилиндр, конус.

Геометрические величины

Ученик научится:

• измерять длину отрезка;

• вычислять периметр треугольника, прямоугольника и квадрата;

• оценивать размеры геометрических объектов, расстояния приближённо (на глаз).

Ученик получит возможность научиться вычислять площадь и периметр различных фигур.


Раздел 5. Требования  к уровню подготовки обучающихся  к концу 4 класса

В результате изучения математики ученик должен:

знать/понимать:

- последовательность чисел в пределах 100000;

- таблицу сложения и вычитания однозначных чисел;

- таблицу умножения и деления однозначных чисел;

- правила порядка выполнения действий в числовых выражениях;

уметь:

- читать, записывать и сравнивать числа в пределах 1000000;

- представлять многозначное число в виде суммы разрядных слагаемых;

- пользоваться изученной математической терминологией;

- выполнять устно арифметические действия над числами в пределах сотни и с большими числами в случаях, легко сводимых к действиям в пределах ста;

- выполнять деление с остатком в пределах ста;

- выполнять письменные вычисления (сложение и вычитание многозначных чисел, умножение и деление многозначных чисел на однозначное и двузначное число);

- выполнять вычисления с нулем;

- вычислять значение числового выражения, содержащего 2 - 3 действия (со скобками и без них);

- проверять правильность выполненных вычислений;

- решать текстовые задачи арифметическим способом (не более 2 действий);

- чертить с помощью линейки отрезок заданной длины, измерять длину заданного отрезка;

- распознавать изученные геометрические фигуры и изображать их на бумаге с разлиновкой в клетку (с помощью линейки и от руки);

- вычислять периметр и площадь прямоугольника (квадрата);

- сравнивать величины по их числовым значениям; выражать данные величины в различных единицах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- ориентировки в окружающем пространстве (планирование маршрута, выбор пути передвижения и др.);

- сравнения и упорядочения объектов по разным признакам: длине, площади, массе, вместимости;

- определения времени по часам (в часах и минутах);

- решения задач, связанных с бытовыми жизненными ситуациями (покупка, измерение, взвешивание и др.);

- оценки размеров предметов "на глаз";

- самостоятельной конструкторской деятельности


Раздел 6. Критерии и нормы оценки знаний, умений, навыков.


Работа, состоящая из примеров:

Отметка "5" – без ошибок.

Отметка "4" – 1 грубая и 1-2 негрубые ошибки.

Отметка "3" – 2-3 грубые и 1-2 негрубые ошибки или 3 -5 негрубых ошибки.

Отметка "2" – 4 и более грубых ошибки.

Работа, состоящая из задач

Отметка "5" – без ошибок.

Отметка "4" –1-2 негрубые ошибки.

Отметка "3" –1 грубая и 3-4 и более негрубых ошибки.

Отметка "2" – 2 и более грубых ошибки.

Комбинированная работа:

Отметка "5" – без ошибок.

Отметка "4" – 1 грубая и 1-2 негрубые ошибки, при этом грубых ошибок не должно быть в задаче.

Отметка "3" – 2-3 грубые и 3-4 негрубые ошибки, при этом ход решения должен быть верным.

Отметка "2" – 4 и более грубых ошибки.

Контрольный устный счет:

Отметка "5" – без ошибок.

Отметка "4" – 1-2 ошибки.

Отметка "3" – 3-4 ошибки.

Отметка "2" – 5 и более ошибок.

 

Грубые ошибки:

1.Вычислительные ошибки в примерах и задачах.

2.Ошибки на незнание порядка выполнения арифметических действий.

3. Неправильное решение задачи (пропуск действия, неправильный выбор действий, лишние действия).

4. Не решена до конца задача или пример.

5. Невыполненное задание.

Негрубые ошибки:

1.  Нерациональный прием вычислений.

2. Неправильная постановка вопроса к действию при решении задачи.

3. Неверно сформулированный ответ задачи.

4. Неправильное списывание данных (чисел, знаков).

5. Не доведение до конца преобразований.

 За грамматические ошибки, допущенные в работе, оценка по математике не снижается.

За неряшливо оформленную работу, несоблюдение правил каллиграфии оценка по математике снижается на 1 балл, но не ниже "3".


Раздел 7. Перечень учебно - методического обеспечения

Для учащихся

  1. Истомина Н.Б. Математика. 4 класс. Учебник. В двух частях. Учебник. -С., «Ассоциация ХХΙ век», 2014.

  2. Истомина Н.Б., Редько З.Б. Тетради по математике №1, №2. 4 класс. -С., «Ассоциация ХХΙ век», 2014.

  3. Истомина Н.Б. Учимся решать задачи. Тетрадь с печатной основой. 4 класс. -М., Линка-Пресс, 2014.

  4. Истомина Н.Б. Наглядная геометрия. Тетрадь с печатной основой. 4 класс. -М., Линка-Пресс, 2013.

  5. Истомина Н.Б., Виноградова Е.П. Учимся решать комбинаторные задачи. 4 классы. Математика и информатика. –С., «Ассоциация ХХ1 век», 2014.

  6. Истомина Н.Б., Шмырева Г.Г. Контрольные работы по математике. 4 класс (три уровня). –С., «Ассоциация ХХ1 век», 2013.

  7. Истомина Н.Б. , Горина О.П. Тестовые задания по математике. 4 класс. -С., «Ассоциация ХХ1 век», 2014.

  8. Электронная версия тестовых заданий. Программа CoolTest. На сайте издательства «Ассоциация ХХ1 век».

Для учителя

  1. Истомина Н.Б., Горина О. П., Редько З. Б., Мендыгалиева А. К.. Уроки математики 4 класс. Содержание курса. Планирование уроков. Методические рекомендации. Пособие для учителя. – С., «Ассоциация ХХ1 век», 2014 .

  2. Гаркавцева Г. Ю., Кожевникова Е. Н., Редько З. Б., Методические рекомендации к тетради «Наглядная геометрия. 4 класс». Под редакцией Н. Б. Истоминой. -М., Линка- Пресс, 2013.

  3. Видеофильм «Учимся решать задачи. 4 класс» для просмотра на DVD-плеере или компьютере. Авторы Н. Б. Истомина, З. Б. Редько. -М., Линка–Пресс, 2012.

  4. Электронная версия тестовых заданий по математике для 2-4 классов. Программа CoolTest. На сайте издательства «Ассоциация ХХ1 век»






Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 488 355 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 14.02.2018 560
    • DOCX 153.5 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Пешехонова Людмила Борисовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Пожаловаться на материал
  • Автор материала

    Пешехонова Людмила Борисовна
    Пешехонова Людмила Борисовна
    • На сайте: 5 лет и 3 месяца
    • Подписчики: 5
    • Всего просмотров: 89777
    • Всего материалов: 78