Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Календарно-тематическое планирование спецкурса "Математические методы в экономике"

Календарно-тематическое планирование спецкурса "Математические методы в экономике"

  • Математика

Поделитесь материалом с коллегами:



Пояснительная записка


Современная экономическая наука характеризуется широким спектром математики, как общекультурной ценностью человечества, являющейся инструментом познания окружающего мира и самого себя.

Ориентация на социально-экономические профессии требует экономического мышления, в немалой степени, основанного на специальных математических методах. Доход, прибыль, налог, рентабельность – это все цифры, и без хорошей математики здесь не обойтись: чем правильнее расчет, тем прибыльнее результат. Поэтому математика выступает в качестве предмета, с помощью которого предприниматель может выбрать оптимальный вариант действий из всех возможных.

Данный курс позволяет учащимся изучить эти методы, научиться применять их к решению экономических задач, а главное, предусматривает развитие математических способностей, ориентацию на профессии, а также выбору профиля дальнейшего обучения.

К тому же, единое национальное тестирование, в котором имеются текстовые задачи и экономического содержания, показывает, что далеко не все учащиеся справляются с ними, а времени на уроках часто не хватает для качественного усвоения темы.

Курс «Математические методы в экономике» поддерживает изучение основного курса математики, направлен на систематизацию знаний, реализацию межпредметных связей, он поможет учащимся определиться с профильной дифференциацией перед поступлением в высшие учебные заведения.

Цели курса:

  1. Обеспечение математической подготовки учащихся к изучению математических моделей экономики.

  2. Овладение экономико-математическими методами в изучении экономики.

  3. Формирование у школьников целостной картины взаимосвязи экономической науки, бизнеса и математики.

  4. Формирование средствами математики направленности личности в профильной дифференциации, ее профессиональных интересов.

Задачи курса:

  1. Сформировать у учащихся понятия об экономико-математических методах.

  2. Научить применять математические методы к решению задач экономического содержания.

  3. Овладеть навыками анализа и систематизации полученных ранее знаний в результате их применения в незнакомой ситуации.

  4. Способствовать интеграции знаний учащихся по математике и экономике.


В организации учебного процесса обучения в рамках курса «Математические методы в экономике» используются две формы: урочная форма и внеурочная форма, в которой учащиеся дома выполняют практические задания творческого характера для самостоятельного решения.

Изучение материала опирается на использование следующих методов обучения:

  • объяснительно-иллюстративного;

  • поискового;

  • частично-поискового;

  • метода проблемного изложения учебного материала.


Предполагаемые результаты

Изучение данного курса дает возможность учащимся:

  • изучить математические методы решения задач экономического содержания;

  • овладение умениями и навыками решения задач с помощью экономико-математических методов;

  • овладение техникой построения графических моделей при решении задач;

  • освоить основные приемы решения задач на свойствах функций;

  • освоить основные методы решения комбинаторных задач и задач теории вероятностей;

  • повысить уровень математической культуры, творческого развития, познавательной активности.




















СОДЕРЖАНИЕ ПРОГРАММЫ


№ уроков

Содержание учебного материала

Кол-во часов

11 «Б»

11 «В»


Тема 1. Функции, их свойства, графики, используемые в экономике

7



1

Математические модели в экономике

1

5.09

2.09

2

Экономико-математические методы в решении задач

1

12.09

9.09

3-4

Графические модели в экономике

2

19,26.09

16,23.09

5

Функции спроса и предложения, связанные с линейными, квадратичными и дробно-линейными функциями

1

3.10

30.09

6-7

Кривые прибыли, затрат, средних издержек

2

10,17.10

7,14.10


Тема 2. Рыночное равновесие. Уравнения, неравенства и их системы в задачах экономического содержания

7



8

Рыночное равновесие

1

24.10

21.10

9

Динамика равновесия при изменении условий

1

31.10

28.10

10

Рынок отдельных продуктов

1

14.11

12.11

11,12

Решение задач экономического содержания

1

21.11

18.11

13-15

Исследование систем уравнений, зависящих от параметров (объема выпуска, его стоимости)

3

28.11

5,12.12

25.11

2,9.12


Тема 3. Максимумы и минимумы в экономических задачах

3



16

Экстремальные задачи в экономике

1

19.12

18.12

17

Решение задач о максимальном выпуске без использования производной

1

26.12

23.12

18

Решение задач о минимальной стоимости без использования производной

1

16.01

13.01


Тема 4. Последовательности. Банковские задачи

5



19-20

Простые и сложные проценты

2

23,30.01

20,27.01

21

Расчеты банка с вкладчиком и заемщика с банком

1

6.02

3.02

22

Деятельность системы банков

1

13.02

10.02

23

Мультипликаторы. Дисконтирование

2

20,27.02

17,24.02


Тема 4. Элементы комбинаторики и теории вероятности

6



24-26

Перестановки. Размещения. Сочетания

3

5,12,19.03

2,9,16.03

27-29

Понятие о вероятностных моделях в экономике

3

2,9,16.

04

6,13,20.

04


Тема 5. Понятие о графах. Сетевые графики

4



30-31

Понятие графа, их виды и свойства

2

23,30.04

27.04,

4.05

32-33

Сетевые графики в экономике

2

7,14.05

11,18.05

34

Решение задач экономического содержания

1

21.05

25.05



ПРИЛОЖЕНИЕ


Тема 1. Функции, их свойства, графики, используемые в экономике


Занятие № 1

Тема: «Математические модели в экономике»

Цель: формирование понятия «математической модели» как способ изучения явлений внешнего мира

Задачи:

  1. Овладеть экономическим языком с помощью математической символики.

  2. Научить с помощью математического моделирования представлять задачи экономического содержания.

  3. Научить применять свойства функций и графиков к моделированию экономических задач.

  4. Овладеть связями между понятиями в экономике, математике и практическими задачами.


I. Организационный момент.

Заинтересовать учащихся на этом этапе в изучении предложенной темы. Попытаться ответить на вопрос: «каким образом современная математика применяется к изучению физических, астрономических, биологических, экономических, гуманитарных и других явлений?».

Ответ: «с помощью построения и анализа математических моделей изучаемого явления».

Что такое математическая модель?

У каждого из нас слово «модель» вызывает различные ассоциации. У одних – это действующие модели роботов, станков, кораблей, у других – муляжи животных, внутренних органов человеческого организма, у третьих – модель самолета, продуваемая потоком воздуха в аэродинамической трубе.

Среди множества всевозможных моделей особую роль играют математические модели. Так называют приближенное описание какого-либо явления внешнего мира, выраженного с помощью математической символики и заменяющее изучение этого явления исследованием и решением математических задач. Таким образом, математика применяется не непосредственно к реальному объекту, а к его математической модели.

Изучение явлений с помощью математических моделей называется математическим моделированием. Схематически процесс математического моделирования представлен в следующей таблице:

Явление внешнего мира

Его приближенное описание. Запись основных свойств и соотношений между ними на математическом языке, формулировка основных математических задач

Решение математических задач, исследование решений

Выводы, новые свойства изучаемого явления, прогнозы, сравнение с известными результатами








Уточнения модели




Хорошо построенная математическая модель обладает удивительным свойством – ее изучение дает новые, неизвестные ранее знания об изучаемом объекте или явлении.

По мере возникновения, становления и развития математики укреплялись ее связи с экономикой. Поэтому неудивительно, что современная экономика широко использует математические методы, которые позволяют получать теоретические выводы экономических задач, высказывать прогнозы, давать рекомендации и устанавливать различные связи между экономическими характеристиками.

Особенность моделирования экономических процессов состоит в исключительном многообразии и разнородности предмета моделирования. Например, только перечень товаров и услуг в современном производстве насчитывает десятки миллионов наименований.

II. Решение задач.

Задача. Фирма выпускает прогулочные и спортивные велосипеды. Ежемесячно сборочный цех способен собрать не более шестисот прогулочных и не более трехсот спортивных велосипедов. Качество каждого велосипеда проверяется на двух стендах А и Б. Каждый прогулочный велосипед проверяется 0,3 ч на стенде А и 0,1 ч – на стенде Б, а каждый спортивный велосипед проверяется 0,4 ч на стенде А и 0,3 ч – на стенде Б. По техническим причинам стенд А не может работать более 240 ч в месяц, а стенд Б – более 120 ч в месяц. Реализация каждого прогулочного велосипеда приносит фирме доход 50 руб., а каждого спортивного – 90 руб. Сколько прогулочных и сколько спортивных велосипедов должна ежемесячно выпускать фирма, чтобы ее прибыль была наибольшей?

Решение. Составим математическую модель этой задачи.

Пусть х – количество прогулочных велосипедов, у – количество спортивных велосипедов.

Тогда по условию 0 ≤ х ≤ 600, 0 ≤ у ≤ 300. Занятость стенда А составляет 0,3х+0,4у (ч), что не должно превышать 240 ч. Поэтому 0,3х+0,4у≤240. Аналогично для стенда Б имеем 0,1х+0,3у≤120. Прибыль фирмы составляет S=50х+90у (руб.).

Иhello_html_60c4693b.gifтак, мы пришли к следующей математической задаче: найти целое значение х и у, удовлетворяющие системе неравенств

0,3х+0,4у≤240

0,1х+0,3у≤120

0 ≤ х ≤ 600

0 ≤ у ≤ 300,


и такие, чтобы прибыль S=50х+90у была наибольшей.

Изобразим на плоскости множество точек, удовлетворяющих системе. Всевозможные решения поставленной задачи лежат внутри или на границе многоугольника ОАВCDE. Из рассмотрения рисунка очевидно, что функция S=50х+90у достигает своего наибольшего значения в одной из вершин O, A, B, C, D или E построенного многоугольника. Поэтому найдем координаты вершин и вычислим в них значения прибыли S. Имеем: О(0; 0), А(0; 300), В(300; 300), С(480; 240), D(600; 150) и Е(600; 0).

hello_html_59803aef.png


Вычисляем значение прибыли S в каждой точке:

в точке О(0; 0), S = 50 ∙ 0 + 90 ∙ 0 = 0 (руб.);

в точке А(0; 300), S = 50 ∙ 0 + 90 ∙ 300 = 27 000 (руб.);

в точке В(300; 300), S = 50 ∙ 300 + 90 ∙ 300 = 42 000 (руб.);

в точке С(480; 240), S = 50 ∙ 480 + 90 ∙ 240 = 45 600 (руб.);

в точке D(600; 150), S = 50 ∙ 600 + 90 ∙ 150 = 43 500 (руб.);

в точке Е(600; 0), S = 50 ∙ 600 + 90 ∙ 0 = 30 000 (руб.).

Анализируя полученные результаты, мы видим, что наибольшее значение прибыли равно 45600 руб. и достигается оно в точке С, т.е. при выпуске 480 прогулочных велосипедов и 240 – спортивных.

Условия задачи диктуют построение математической модели. Мы видим, что в данном случае условия намеренно упрощены по сравнению с реальными производственными обстоятельствами: не учтены возможный брак и поломка оборудования, перебои в поставках смежников и т.д. Тем не менее, полученный результат показывает возможности фирмы при работе в «идеальных условиях». С помощью более точных моделей можно учесть возможный брак, отказ станков и т.д. Такая система моделей будет все более точно описывать деятельность фирмы.

В заключение сделаем замечание о точности дальнейших вычислений. Для решения большинства задач требуется калькулятор.


Задание на дом

Задача. Вы решили продать дом. Первый из двух имеющихся покупателей предлагает Вам заплатить за дом 200 000 руб. немедленно и еще 300 000 руб. через 1 год. Второй покупатель предлагает Вам за дом 100 000 руб. немедленно, 250 000 руб. через 1 год и еще 200 000 руб. через 2 года. При условии, что ставка банков не меняется в течение трех лет и составляет 6% годовых, установить, какой покупатель предлагает наилучшие условия.


Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 28.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров209
Номер материала ДВ-016584
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх