Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / 10 класс алгебра и начала анализа «Методы решения уравнений, содержащих обратные тригонометрические функции».
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

10 класс алгебра и начала анализа «Методы решения уравнений, содержащих обратные тригонометрические функции».

библиотека
материалов

hello_html_m2a7690f7.gif10 класс алгебра и начала анализа

Тема «Методы решения уравнений, содержащих обратные тригонометрические функции.

Цели: 1. Систематизировать, обобщить знания и умения учащихся по применению методов решения уравнений, содержащих обратные тригонометрические функции.

2. Развивать умение наблюдать, сравнивать, обобщать, классифицировать, анализировать математические ситуации.

3. Воспитывать такие качества личности, как познавательная активность, самостоятельность, упорство в достижении цели. Побуждать учеников к самоконтролю, взаимоконтролю, самоанализу своей деятельности.

Оценочный лист обучающегося.

Фамилия

Имя

Этапы

Задание

Достижения

Оценка

1

Задание №1

Знать и понимать определения обратных тригонометрических функций, тождеств


2

Тест

Уметь применять свойства обратных тригонометрических функций для решения уравнений.


3

Классификация уравнений по методам решения

Знать характеристику каждого метода.

Уметь классифицировать уравнения по методам решений


4

Проверка домашнего задания

Уметь решать уравнения №9, 11, 10, 3, 13


5

Решение уравнений

Уметь решать уравнения №12, 16, 14


6

Самостоятельная работа

Уметь решать уравнения:

Вариант 1-1,4

Вариант 2-4,5


Итоговое количество баллов


Оценка




Критерии оценки: «5» - от 28 до 30 баллов, «4» - от 25 до 27 баллов, «3» - от 18 до 24 баллов, «2» - менее 18 баллов.

Предварительное домашнее задание:

Повторить определение обратных тригонометрических функций, понятие о равносильных и неравносильных преобразованиях, характеристики методов решения уравнений, содержащих обратные тригонометрические функции.

Ход урока

Урок начинается с вводной беседы учителя, в которой он отмечает, что уравнения, содержащие обратные тригонометрические функции, часто встречаются у учащихся старших классов значительные трудности. Поэтому сегодня им предстоит повторить и систематизировать методы решения таких уравнений. Учитель ориентирует учеников в работе с оценочным листом.

Этап 1

Учитель предлагает ребятам вначале вспомнить важнейшие свойства обратных тригонометрических функций. Ученики выполняют задания №1, №2 на карточках в парах.

Одна пара выполняет эти задания на магнитной доске. Когда задания карточек выполнены, ребята сравнивают свои записи с работой товарищей у доски, исправляют ошибки, фиксируют свои успехи в оценочном листе.

Задание 1. Соедините линиями соответствующие данным обратные тригонометрические функциям область определения, область значения, условие монотонности, график.

Критерии оценок:

«5» - нет ошибок,

«4» - 1-2 ошибки,

«3»- 3-4 ошибки,

Монотонно возрастающая

«2» - более 4 ошибок.



D(y)=[-1;1]

y=arcsinx

E(y)=[-hello_html_4ea412bd.gif]



E(y)=(0;hello_html_6dbd9c0b.gif

D(y)=R

y=arcctgx

y=arctgx

y=arccosx

E(y)=[0;π]

E(y)=(-hello_html_4ea412bd.gif)

Монотонно убывающая











Задание 2.

Заполните пропуски в тождествах.

arccos x

hello_html_6b2fd1c.gif-

arccos (-x)

-

arcsin x

arcsin (-x)

1)

arcsin x + arccos x=

2)

arctg x

-

arctg (- x)=

3)

arctg x

hello_html_6b2fd1c.gif-

arcctg (- x)=

4)

arctg x + arcctg x=

5)

hello_html_m4cf36593.gif

6)



Этап 2

Тест. Посредствам теста проверяются умения учащихся применять свойства обратных тригонометрических функций для решения уравнений.

Вариант1

Найдите пары: «Уравнение - его решение»

решения

уравнения

а

б

в

г

д

-1

1

0

hello_html_m3219841b.gif

-1hello_html_mab38aa4.gif

1

arcos x=hello_html_m1b45012d.gif




+


2

sin(arcsin x + arccos x)=1





+

3

arccos x=-(x-1)2


+




4

arctg x=-hello_html_m55fd73a8.gif



+



5

arcsin x=-hello_html_m21150844.gif

+





Критерии оценки: «5»- 5 верных ответов, «4» - 4 верных ответа, «3» - 3 верных ответа, «2»- 1-2 верных ответа.

Затем учащиеся объясняют решения уравнений №5.

Этап 3

На третьем этапе проводится классификация уравнений по методам решения. Рядом с каждым методом 1-4 указать номер уравнения, которое можно решать данным методом. Работа в парах.

Обсуждение проводится в быстром темпе. В результате выполнения этого задания появилась схема.

Уравнения, решаемые на основе условия равенства обратных тригонометрических функций:

  1. Методы использования свойств функций, входящих в уравнение:

б)метод использования свойств ограниченности функции №1,4

а)метод обращения к монотонности функции №3,13

Методы









Метод замены переменной

а) одноимённых (№5,6)

а) разноимённых (№9,10,11)



Разложение на множители (№8)

б) сводятся к алгебраическим с применением различных преобразований(№12,14,15)

а) сводятся к квадратным (№2,16,7)













Этап 4

На следующем этапе проверяем домашнее задание.

На доске заранее заготовлено решение, ученики отвечают по готовым записям. Работа ведётся фронтально, но пары обмениваются тетрадями и проводят взаимопроверку.

Уравнения

1

arcsin(x+1)+ arcsin(y-1)=hello_html_6b2fd1c.gif

2

arcsinx arccosx=hello_html_m763ee416.gif/18

3

arcsinhello_html_m774e6528.gif=2 π- πx

4

arccos(x+y)+ arcos(x-y)=0

5

arcsin (x2 -6x-8)+ arcsin(15-2x)=0

6

arccos (4x2 -3x-2)+ arccos (3x2 -8x-4)=hello_html_6b2fd1c.gif

7

(arccos x)2 -6 arccos x +8=0

8

(x+2)(2x2 -7x+3) arcos x/2=0

9

arccoshello_html_53883bd2.gif=arcsinhello_html_m69519df3.gif

10

arctg(x-3a)= arctg(3x-a)

11

arcsinhello_html_4ce6c12d.gif= arctghello_html_m3e251b2f.gif

12

arctg(x-1)+ arctg(2-x)=hello_html_m55fd73a8.gif

13

23 arctg(1-6x)=-10hello_html_6b2fd1c.gif

14

arccos7x=2 arcsin2x

15

arcos(3x-4)=2arct(5-3x)

16

18(2arcsin2 x/2+3x arcosx/2)=19hello_html_6b2fd1c.gif

Этап 5

Далее отмечаем, что самый распространённый из данных методов-метод замены переменной. При решении уравнений удачная замена переменной позволяет свести задачу к более простой. Однако во многих случаях удобная замена далеко не очевидна, и поэтому необходимо выполнять некоторые преобразования. Вспоминаем способы преобразований:

-переход к уравнению – следствию;

- переход к уравнению, равносильному на некотором множестве исходному уравнению;

- переход к системе, равносильной исходному уравнению.

Затем трое учеников у доски решают уравнения №12, 16, 14.

Остальные решают любое из предложенных трёх уравнений.

Этап 6

В конце проводится самостоятельная работа (под копировальную бумагу).

Самостоятельная работа

Вариант 1

1

arcsin(x+1)+ arcsin(y-1)=π

ответ: (0;2)

6

arccos (4x2 -3x-2)+ arccos (3x2 -8x-4)=π

ответ:{-3/7}

Вариант 2

4

arccos(x+y)+ arcos(x-y)=0

ответ: (1;0)

5

arcsin (x2 -6x-8)+ arcsin(15-2x)=0

ответ: х=7

Итог урока

Подводя итоги урока, ещё раз замечаем, что свойства монотонности и ограниченности являются ключевыми при решении многих уравнений, содержащих обратные тригонометрические функции.

Учитель отмечает, в какой мере достигнуты цели урока, успехи ребят и ориентирует их на домашнем задании. Оценка, заработанная им на уроке, показывает им, насколько они готовы к зачётному тесту по теме. Домашнее задание предусматривает уровневую дифференциацию.

1-й уровень-№2,7,8,15

2-й уровень –задания поискового плана: подобрать неравенства, решаемые методом 1-4.

3-й уровень-составить тест, аналогичный тесту этапа 2 по теме: «Решение неравенств, содержащих обратные тригонометрические функции».






Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 20.11.2015
Раздел Математика
Подраздел Конспекты
Просмотров210
Номер материала ДВ-173390
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх