Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Комплекс задач по ГИА (планиметрия)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Комплекс задач по ГИА (планиметрия)

библиотека
материалов

Комплекс задач по ГИА (планиметрия)

Задача 1.
Дан треугольник со сторонами 5, 12 , 13. Точка О лежит на большей стороне треугольника и является центром окружности, касающейся двух других сторон, найдите радиус окружности.
Решение:
Нарисуем рисунок: AC=5, AB=12, CB=13.

hello_html_m21d58ae3.png


Заметим, что этот треугольник является прямоугольным, по обратной теореме Пифагора, т.к. выполняется равенство:
169 = 144 + 25
На CB находится точка О, которая является центром окружности. Эта окружность касается AC и AB в точках E и D соответственно. Проведем радиусы OE и OD. Эти отрезки будут перпендикулярны соответствующим сторонам треугольника, т.к. перпендикуляры к касательной проходящие через точку касания, проходят через цент окружности. Обозначим радиус окружности за x.

Далее, заметим, что ADOE - квадрат, т.к. три угла в нем = 90o и две смежные стороны радиусы, т.е. равны. Значит,
OE = OD = AE = AD = x.
CE = 5 - x
DB = 12 - x
Обозначим CO = a.
OB = 13 - a.

По теореме Пифагора у треугольника CEO:
CO2 = CE2 + EO2
a2 = (5-x)2 + x2

По теореме Пифагора у треугольника DOB:
OB2 = OD2 + DB2
(13 - a)2 = x2 + (12 - x)2

a2 = 25 - 10x + 2x2 (Выражение №1)
169 - 26a + a2 = 144 - 24x + 2x2 (Вырадение №2)

Подставим во второе выражение вместо a2, первое выражение.

25 - 26a + (25 - 10x + 2x2) = -24x + 2x2
50 - 26a -10x = -24x
-26a = -14x - 50 (умножим на -0,5)
13a = 7x + 25
a = (7x+25)/13

Подставим полученное a в первое выражение и умножим все выражение на 169.
(7x+25)2 = 4225 - 1690x + 338x2
49x2 + 350x + 625 = 4225 - 1690x + 338x2
289x2 - 2040x - 3600 = 0
D = 4141600 - 4141600 = 0
x = 2040/578 = 1020/289 = 60/17 = 3 целых 9/17
За х мы обозначали радиус окружности, значит, ответ будет 3 целых 9/17

Ответ: 3 целых 9/17


Задача 2.

В прямоугольном треугольнике биссектриса, проведенная из вершины прямого угла, делит гипотенузу в отношении 3 : 2, а высота делит гипотенузу на отрезки, один из которых на 20 больше другого. Найти площадь треугольника.

Решение.
Рассмотрим треугольник АВС – прямоугольный (рис. 1).
1) СL – биссектриса прямого угла C. По условию LB : AL = 3 : 2, тогда по теореме о биссектрисе угла треугольника имеет место равенство CB/AC = LB/AL.

Имеем CB/AC = 3/2, т.е. CB = 3y; AC = 2y.
2) Пусть AH = x, тогда НВ = х + 20. Так как треугольник АВС – прямоугольный, то имеют место равенства
АС2 = АН · АВ и ВС2 = НВ · АВ.
Таким образом, можно записать:
(2у)2 = х(2х + 20) и (3у)2 = (х + 20)(2х + 20).

Из первого уравнения имеем
у2 = х(2х + 20)/4, из второго у2 = (х + 20)(2х + 20)/9.

Можно приравнять правые части полученных выражений, получим:
х(2х + 20)/4 = (х + 20)(2х + 20)/9.

После упрощения будем иметь:
х/4 = (х + 20)/9; 9х = 4х + 80; 5х = 80; х = 16.

Таким образом, у2 = 16 · (2 · 16 + 20)/4 = 4 · 52 = 208.

3) Площадь треугольника АВС можно найти по формуле SABC = (AC · CB)/2.

SABC = 2у · 3у/2 = 3у2.
SABC = 3 · 208 = 624.

Ответ: 624.hello_html_18fa891e.jpg

Задача 3.

Стороны прямоугольного треугольника образуют геометрическую прогрессию. Найти значение выражения (6 + 2√5)1/2 · sin α, где α – меньший угол треугольника.

Решение.
1) Пусть в прямоугольном треугольнике АВС меньшая сторона СВ = а, тогда АС = аq и AB = aq2, где q > 1.
Кроме того, угол А = α – меньший угол треугольника АВС, так как лежит напротив меньшей из сторон этого треугольника (рис. 2).

2) По теореме Пифагора АВ2 = АС2 + ВС2, тогда (аq2)2 = (aq)2 + а2.
Упростим полученное выражение:
а2q4 = a2q2 + а2 или q4 – q2 – 1 = 0 после сокращения на q ≠ 0.
Рассмотрим полученное уравнение как квадратное относительно q2, тогда
D = 1 – 4 · 1 · (-1) = 5;
q2 = (1 ± √5)/2. Так как q2 > 1, то q2 = (1 + √5)/2.

3) По определению синуса sin α = CB/AB. Таким образом, sin α = а/аq2 = 1/q2, поэтому sin α = 2/(1 + √5).

4) Найдем значение необходимого по условию задачи выражения:
(6 + 2√5)1/2 · sin α = (6 + 2√5)1/2 · 2/(1 + √5).
В числовом выражении 6 + 2√5 можно выделить полный квадрат, получим
6 + 2√5 = (1 + √5)2.
Подставим в искомое выражение:
(6 + 2√5)1/2 · sin α = (6 + 2√5)1/2 · 2/(1 + √5) = ((1 + √5)2)1/2 · 2/(1 + √5) = (1 + √5) · 2/(1 + √5) = 2.

Ответ: 2.

Задача 4.

В прямоугольном треугольнике катеты равны 24√2 и 7√2. Найти расстояние от вершины прямого угла до центра вписанной в этот треугольник окружности.

Решение.

Рассмотрим треугольник АВС – прямоугольный.

1) СМОN – квадрат, СО – диагональ этого квадрата и искомое расстояние (рис. 3), тогда СО = а√2. Так как а = r, то СО = r√2.

2) По теореме Пифагора АВ2 = АС2 + ВС2, тогда АВ2 = (24√2)2 + (7√2)2.
Вычисляем: АВ2 = 576 · 2 + 49 · 2 = 2 · 625; АВ = 22√2.

3) Радиус вписанной в прямоугольный треугольник окружности найдем по формуле  r = (a + b – c)/2:

r = (24√2 + 7√2 – 25√2)/2 = 3√2, тогда СО = 3√2 · √2 = 6.

Ответ: 6 hello_html_4b5ad4bd.jpg

Задача 5.

Площадь прямоугольного треугольника равна 6√3. Найти его высоту, проведенную к гипотенузе, если она делит прямой угол в отношении 1 : 2.

Решение.

1) В прямоугольном треугольнике АВС угол АСН относится к углу ВСН как 1 к 2, поэтому обозначим угол АСН = х, угол ВСН = 2х.
Их сумма равна углу С и равна 90°, поэтому АСН + ВСН = 90°,
а значит х + 2х = 90°, х = 30°.
Имеем: угол АСН = 30°, угол ВСН = 60° (рис. 4).

2) Пусть СН = у.
Из прямоугольного треугольника АСН по определению тангенса:
tg ACH = AH/CH; AH = y · tg 30° = y√3/3.
Из прямоугольного треугольника СBН по определению тангенса:
tg BCH = HB/CH; HB = y · tg 60° = y√3.
SABC = (CH · AB)/2; AB = AH + HB = y√3/3 + y√3 = 4y√3/3;
SABC = 6√3 (по условию), тогда 6√3 = (у · 4y√3/3)/2;
6 = 4у2/6;
у2 = 9; у = 3, то есть СН = 3.
Ответ: 3.

Задача 6.
Стороны треугольника равны √5; 2; 3. Найти квадрат расстояния от вершины меньшего угла треугольника до точки пересечения его биссектрис.

Решение.

1) Пусть в треугольнике АВС сторона СВ = 2, АС = √5 и АВ = 3.
Так как 32 = √52 + 22, то треугольник АВС – прямоугольный с гипотенузой АВ (по теореме, обратной теореме Пифагора) (рис. 5).
2) Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.
По формуле r = (a + b – c)/2 найдем r = (2 + √5 – 3)/2 = (√5 – 1)/2.
3) Так как СМОN – квадрат, то МС = r = (√5 – 1)/2, тогда
АМ = АС – МС; АМ = √5 – (√5 – 1)/2 = (√5 + 1)/2.
4) Так как СВ – меньший катет, то угол А – меньший угол, значит, АО – и есть искомое расстояние.
5) Из треугольника АОМ по теореме Пифагора АО2 = АМ2 + МО2, тогда
АО2 = ((√5 + 1)/2)2 + ((√5 – 1)/2)2;
АО2 = (5 + 2√5 + 1)/4 + (5 – 2√5 + 1)/4 = 12/4 = 3.

Ответ: 3.hello_html_273d19dd.jpg

Задача 7.

В прямоугольном треугольнике длины медиан, проведенных из вершин острых углов, равны √34 и √11. Найти длину гипотенузы.

Решение.

Рассмотрим треугольник АВС – прямоугольный.
1) АМ = √34; ВN = √11 (рис. 6). Пусть ВС = а; АС = b, тогда СМ = 1/2; ВС = а/2; СN = 1/2 АС = b/2.
2) В треугольнике АСМ – прямоугольном по теореме Пифагора
АМ2 = СМ2 + АС2, тогда (√34)2 = (а/2)2 + b2; а2/4 + b2 = 34.
3)  Из треугольника CNB – прямоугольного по теореме Пифагора
NB2 = CB2 + CN2, тогда (√11)2 = (b/2)2 + a2; b2/4 + a2 = 11.
4) Сложим равенства а2/4 + b2 = 34 и b2/4 + a2 = 11 и получим:
а2/4 + b2 + b2/4 + a2 = 11 + 34;
2/4 + 5b2/4 = 45;
а2 + b2 = 36.
5) В треугольнике АВС по теореме Пифагора
АВ2 = АС2 + ВС2, тогда АВ2 = а2 + b2;
АВ2 = 36, АВ = 6.

Ответ: 6.

Задача 8. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки 5 см и 12 см. Найти катеты треугольника.

hello_html_60044ffc.png

Решение:

АМ = 5; ВМ = 12. Пусть радиус вписанной окружности равен hello_html_21ff3d6e.pngсм.

По свойствам отрезков касательных, проведенных к окружности из внешней точки: BM = BN, AM = AP.

Тогда BC = BN + NC = 12 + hello_html_21ff3d6e.png,

AC = AP + PC = 5 + hello_html_21ff3d6e.png, AB = BM + MA = 12 + 5 = 17.

По теореме Пифагора АВhello_html_31c35467.png = АСhello_html_31c35467.png + ВСhello_html_31c35467.png.

(hello_html_21ff3d6e.png + 12)hello_html_31c35467.png + (hello_html_21ff3d6e.png + 5)hello_html_31c35467.png = 17hello_html_31c35467.png.

Упростив уравнение, получим hello_html_m77c31df.png+ 17hello_html_21ff3d6e.png - 6 = .

Его корни hello_html_m15652260.png= - 2 (посторонний) и hello_html_50c4530.png= 3.

Тогда АС = 5 + 3 = 8; ВС = 12 + 3 = 15.

Ответ: 8 см, 15 см.

Задача 9. В параллелограмме ABCD со стороной AD = 25 проведена биссектриса угла А, проходящая через точку Р на стороне ВС. Найдите периметр трапеции APCD, если ее средняя линия равна 15, а диагональ hello_html_m62f5894.png.

hello_html_m567da28d.png

Решение:

1) hello_html_7d427314.png, так как АР - биссектриса; тогда hello_html_m6eeccb5a.pngАВР - равнобедренный (АВ = ВР);

2) MN - средняя линия трапеции APCD: 2MN = AD + PC; AD + PC = 30; PC = 5; BP = 20; AB = 20.

По теореме косинусов:

3) В hello_html_m6eeccb5a.pngАВР: APhello_html_31c35467.png = ABhello_html_31c35467.png+BPhello_html_31c35467.png- 2ABhello_html_m6840fd39.pngBPhello_html_m6840fd39.pngcoshello_html_5fa2163.pngAВР.

4) В hello_html_m6eeccb5a.pngАВC: AChello_html_31c35467.png = ABhello_html_31c35467.png+ BChello_html_31c35467.png- 2ABhello_html_m6840fd39.pngBChello_html_m6840fd39.pngcoshello_html_5fa2163.pngAВР.

Из 4) находим coshello_html_5fa2163.pngAВР = hello_html_m64b28e5.png; подставив найденное значение в 3), получим АРhello_html_31c35467.png = 900, АР = 30.

5) hello_html_2d51bb11.png= AP + РС + CD + DА = 30 + 5 + 20 + 25 = 80.

Ответ: 80.

Задача 10. Сторона правильного шестиугольника ABCDEF равна hello_html_2f45252e.png. Найдите радиус окружности, вписанной в треугольник МРК, где точки М, Р, К - середины сторон шестиугольника ABCDEF соответственно.

hello_html_7abf481b.png

Решение: Для наглядности изобразим правильный шестиугольник как вписанный в окружность.

1) По свойствам правильного шестиугольника BE = 2 AF = hello_html_m27fc5bdd.png.

2) ABEF - равнобедренная трапеция, в которой МК - средняя линия: МК = hello_html_m30d5498f.png.

3) hello_html_7e7d1f01.pngРК - равносторонний. Радиус искомой вписанной окружности hello_html_570d6625.pngPN, PN = hello_html_m6af2107b.pngМК.

PN = hello_html_m5c068419.png= 72, следовательно, hello_html_21ff3d6e.png= 24.

Ответ: 24.

Задача 11. Углы при одном из оснований трапеции равны hello_html_me2e8a18.pngи hello_html_6a0e48bd.png, а разность квадратов длин ее оснований равна 8. Найти площадь трапеции.

hello_html_m9df6479.png

Решение:

В трапеции hello_html_m2f765037.png, hello_html_4e93d207.png.

Продолжим боковые стороны AD и ВС до пресечения их в точке Р. hello_html_m6eeccb5a.pngCРD - прямоугольный, так как hello_html_7d2c5a0d.png.

Shello_html_m4176689c.png = S hello_html_40ed4c48.png- S hello_html_5ca2f4a8.png

Пусть AB = hello_html_m2c278e29.png, CD = hello_html_5557b7b0.png; по условию hello_html_m26d7d5a5.png- hello_html_5c856d69.png= 8, AB hello_html_34e5e038.pngCD.

S hello_html_79697bba.pngCP hello_html_m6840fd39.pngDP; S hello_html_1641cc4.png= hello_html_m4a532c5f.pngPB hello_html_m6840fd39.pngPA.

hello_html_584ba636.png; hello_html_m705dcb28.png; hello_html_m5a9f37c.png; hello_html_m6a622f4.png.

hello_html_m402f3c30.png.

hello_html_1cb83f6e.png.

S hello_html_m5420e0ac.png- hello_html_m6d311e45.png= hello_html_m4c53c74.png- hello_html_3d244fca.png8 = 1.

Ответ: 1.




Задача на параметры

При каких значениях а уравнение hello_html_1b8d834a.png имеет равные корни?

Уравнение имеет равные корни в том случае, если дискриминант равен нулю. Найдем дискриминант данного уравнения и приравняем его к нулю:

hello_html_5e31cfaa.png

Ответ: при а=2 и а=2/35.




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 16.10.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров394
Номер материала ДВ-068841
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх