337259
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыКонспект разработки факультативного курса по математике "Комбинаторика. Правила сложения и умножения" (7 класс)

Конспект разработки факультативного курса по математике "Комбинаторика. Правила сложения и умножения" (7 класс)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

РАЗРАБОТКА ЗАНЯТИЯ ФАКУЛЬТАТИВНОГО КУРСА В 7 КЛАССЕ ПО ТЕМЕ «КОМБИНАТОРИКА. ПРАВИЛА СЛОЖЕНИЯ И УМНОЖЕНИЯ».


Цели занятия:

Обучающая:

а) введение понятия «комбинаторика»;

б) научить учащихся решению задач на применение правил комбинаторики - правил сложения и умножения.

Развивающая:

Развитие математически грамотной речи, логического мышления, сознательного восприятия учебного материала.

Воспитательная:

Воспитание познавательной активности, культуры общения, ответственности.


Методы проведения занятия: беседа, мини-диалог, самостоятельная работа.


ПЛАН ЗАНЯТИЯ

  1. Организация начала урока.

  2. Постановка задачи и целей занятия.

  3. Введение новых понятий.

  4. Закрепление. Решение упражнений.

  5. Подведение итогов занятия.


ХОД ЗАНЯТИЯ

  1. Организационный момент.


  1. Делаю краткое вступление. Сообщаю задачу и цели занятия. Совершаем небольшой экскурс в историю комбинаторики. Ученики слушают сообщение на тему «Комбинаторика – наука о составлении и подсчёте комбинаций». В тетрадях и на доске записи:

Мифы Древнего Востока – задача построения магического квадрата.

Б.Паскаль, П.Ферма – теория азартных игр.

Г.Лейбниц, Я.Бернулли, Л.Эйлер – развитие комбинаторных методов.


  1. Введение новых понятий. Составляем конспект опорных понятий.

При получении любой комбинации мы составляем её из отдельных элементов, последовательно соединяя их друг с другом. Чаще всего эти элементы выбирают из некоторого конечного множества. Подсчитать общее число возможных комбинаций помогает одно из важнейших правил комбинаторики – правило умножения.

Правило умножения (простейший случай): если первый элемент в комбинации можно выбрать а способами, после чего второй элемент – в способами, то общее число комбинаций из двух элементов будет ав.

Пример 1. Подсчитать количество двузначных чисел, которые можно составить из цифр 1, 2, 3.

Решение. На первое место цифру можно выбрать тремя способами, после чего на второе место – тоже тремя способами. Значит, всего таких чисел по правилу умножения можно получить 339. Можно проверить ответ, выписав друг за другом все эти числа в порядке возрастания: 11,12,13,21,22,23,31,32,33. Видно, что они разбились на три группы по три числа в каждой – отсюда и правило умножения при подсчёте таких комбинаций.

Но бывают задачи, в которых после выбора одного из а объектов в качестве первого элемента комбинации нельзя однозначно сказать, сколькими способами можно выбрать второй элемент – это зависит от того, какой именно объект был выбран первым. Рассмотрим такую ситуацию на примере.

Пример 2. Подсчитать количество двузначных чисел, которые можно составить из цифр 1, 2, 3 так, чтобы первая цифра была меньше второй.

Решение. На первое место цифру можно выбрать тремя способами, а вот на второе место после этого: двумя способами, если первой цифрой была выбрана цифра 1; одним способом, если 2; нулём способов, если 3.

В данном случае приходится применять правило сложения: разбить все комбинации на непересекающиеся классы, подсчитать количество комбинаций в каждом классе (например, по правилу умножения), а затем сложить эти количества. Это очень важное правило для решения задач.

Однако правило умножения необходимо сформулировать ещё раз: если нужно сформировать комбинацию из к элементов и при этом первый элемент в комбинации можно выбрать п способами, после чего второй элемент – т способами, после чего третий – с способами и так далее, то всего таких комбинаций будет птс…в.

Самый естественный порядок, который можно установить на комбинациях, называется лексикографическим. Это принцип упорядочения: сначала сравниваются первые элементы комбинаций; если они совпадают, то сравниваются вторые, и так далее до первой пары несовпадающих элементов. Та комбинация, у которой этот элемент меньше, считается меньшей. Если сравнение элементов оборвалось из-за того, что одна из комбинаций оказалась короче, то она также считается меньшей. При сравнении комбинаций предполагаем, что порядок уже установлен на элементах, из которых строится комбинация. Приводятся примеры.


  1. Закрепление. Решение упражнений.

Вызываю к доске учеников, и вместе с классом решаем задачи:

    1. Сколькими способами можно посадить шестерых школьников на скамейку так, чтобы Коля и Оля оказались рядом?

    2. В компьютере каждый символ (буква, цифра, специальный знак) кодируется последовательностью из восьми 0 и 1, например: 01000110 – код буквы

00110010 – код цифры 2 и т. д. Сколько различных символов можно закодировать подобным образом? Сколько существует различных двоичных кодов длины 8?

Затем три ученика выходят к доске и решают задания:


Карточка № 1.


Подсчитать количество двузначных чисел, которые можно составить из цифр 1, 2, 3 так, чтобы все цифры были различны.

Карточка №3.

После хоккейного матча каждый игрок одной команды пожал руку каждому игроку из другой. Сколько всего игроков присутствовало на площадке, если было совершено 323 рукопожатия?

Карточка №2.


В автомобиле пять мест. Сколькими способами могут пять человек занять места для путешествия, если водить машину могут только трое из них?


























б) Тем временем весь класс самостоятельно решает задачу:


В номере автомобиля записываются подряд буква, три цифры и ещё две буквы. Сколько таких номеров можно составить, если использовать только буквы А, В, Е, К, М, Н, О, Р, С, Т, У, Х (Эти буквы используются в реальных номерах российских автомобилей, поскольку совпадают по начертанию с буквами латинского алфавита)?


  1. Подведение итогов занятия.

Провожу рефлексию. Повторяем основные понятия, записанные в тетрадях. Предлагаю решить задачи дома.

1. Сколькими способами можно выбрать на шахматной доске две различные клетки так, чтобы из одной в другую можно было попасть ходом а) ладьи; б) слона?



ЛИТЕРАТУРА


    1. Е.А. Бунимович, В.А. Булычёв. Вероятность и статистика в курсе математики общеобразовательной школы. Педагогический университет «Первое сентября», М.

    2. БЭС Математика. Научное издательство «Большая Российская энциклопедия», М., 1998 г.

    3. А.Г. Мордкович. Дополнительные главы к учебнику алгебры 7-9 классы. Мнемозина, М., 2002г.

    4. С.М. Никольский, М.К. Потапов. Арифметика 6 класс, Алгебра 8 класс. Мнемозина, М., 2010 г.

    5. Интерактивное оборудование: доска, документ-камера.



Общая информация

Номер материала: ДВ-180821

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.