Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Конспект урока "Логарифмическая функция". 10 класс

Конспект урока "Логарифмическая функция". 10 класс

  • Математика

Поделитесь материалом с коллегами:

Урок в 10 классе

по теме «Логарифмическая функция»

Цели:

1. Образовательные:

Ввести определение логарифмической функции и рассмотреть её свойства и график; отработка умений систематизировать, обобщать свойства функции.

2. Развивающие:

Развитие мыслительных операций посредством наблюдений, сравнений, сопоставлений, сознательного восприятия учебного материала;

развитие зрительной памяти; математической речи;

способствовать развитию творческой деятельности учащихся.

3. Воспитательные:

Воспитание познавательной активности, уважения к мнению друг друга, взаимопонимания, взаимоподдержки, уверенности в себе.


Тип урока: компьютерная поддержка предмета.

Форма работы: классно-урочная.

Технология: личностно-ориентированная, исследовательская.


Эпиграфы к уроку:

1. «Настоящий ученик умеет выводить из неизвестного известное и тем самым приближается к учителю». Гёте И.

2. «Величие человека – в его способности мыслить». Паскаль.

3. Усердие всё превозмогает.


Ход урока:

I. Организационный момент.

Сегодня мы продолжим изучать функции. Повторим изученные функции, их графики и свойства. Познакомимся с новой функцией. Построим её график и изучим свойства.

Я надеюсь, что урок пройдёт интересно, с большой пользой для всех.

II. Концентрация внимания:

Дома вам было дано задание: придумать слова по теме «Функция» на каждую букву слова «логарифм».

(Один ученик заранее пишет на доске слова, подчёркивает орфограммы. Всё закрывается листом.)

Л – (линия, линейная функция)

О – (область определения, окрестность, обратная пропорциональность, ось)

Г – (график, гипербола)

А – (аргумент, абсцисса, асимптота, алгебра, алгоритм)

Р – (рациональное число, радикал)

И – (исследование, иррациональное число)

Ф – (функция)

М – (монотонность , множество значений, максимум, минимум)

Задание отвечающему: Дайте определение тем понятиям, которые являются свойствами функции.

Итак, мы настроены на урок, а теперь:

Наша традиционная разминка:

(у каждого ученика по 10 карточек с номерами от 1 до 10)

Задание: Установите соответствие между графиком функции и соответствующим свойством:

hello_html_m4966ce69.gifhello_html_m3e2f8300.gifhello_html_1c7ea89d.gif

hello_html_48f51651.gifhello_html_63a2d5c9.gifhello_html_m47cf93f5.gif


hello_html_m40de83bb.gifhello_html_4b92e74a.gifhello_html_303e1592.gif


1. Сколько функций являются возрастающими? – 6.

2. Как называются эти функции? 2 – линейная; 8– степенная с нечётным показателем; 4 – показательная с основанием больше 1; 6 – степенная с показателем больше 1;7 – степенная с показателем меньше 1

3. Какие функции являются убывающими? – 5,9.

4. Для каких функций областью определения являются все неотрицательные числа? -7,6

5. Множеством значений является любое действительное число, кроме 0? – 3

6. Какая функция не является непрерывной? – 3

7. Какая функция нечётная? – 3

8. Какая прямая задаётся формулой у = х? - 2

III. Повторение: (задания на доске) – время – 5 минут (по песочным часам)

Класс разбит на 3 группы.

I группа: ученики с высокими учебными возможностями.

Задание: задайте формулой функцию, для которой построен график









Дополнительный вопрос: опишите свойства функции, заданной графиком №4.

II группа: ученики со средними учебными возможностями.

Задание: Установите соответствие между схематическим изображением графика и формулой (уберите ту формулу, которая является лишней).

у = -2х -4

у = (х + 3)3

у = х2 – 4

у = (х – 2)3

у = hello_html_m39980bcc.gif

у = 3х + 5

у = -2х +4

у = (х – 2)4

у = hello_html_m67a27386.gif

у = 3х+5

у = (х + 4)2

Дополнительны вопрос: опишите свойства функции у = hello_html_m39980bcc.gif

III группа: ученики с низкими учебными возможностями.

Задание: Как называется функция и какая линия является её графиком ?

у = 3х -4

у = 3х2 – 5х + 4

у = hello_html_45793531.gif

у = 3х

у = - hello_html_m3d4efe4.gifх +2

у = х3

у = 13х

у = х (как можно назвать эту прямую?)

1. Какой буквой в формуле обозначается независимая переменная? Как она по-другому называется? Какое свойство функции можно определить, зная значения переменной х?

2. Зависимая переменная? Какое свойство функции можно определить, зная значения переменной у?

3. Как по графику определить является функция чётной или нечётной?

4. Как по графику определить является функция возрастающей или убывающей?

5. Что такое нули функции? Где в прямоугольной системе координат расположены точки, которые являются нулями функции7

6. Как определить промежутки знакопостоянства?


IY. Новый материал.

Мы повторили изученные нами ранее функции и их свойства. А теперь познакомимся ещё с одной функцией, которая называется логарифмической.

Запишите тему в тетрадь.

Давайте ещё раз вспомним: какая функция является показательной.

Постройте схематически график показательной функции с основанием

0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1 а hello_html_51d85658.gif 1



Что является её областью определения и множеством значений.

g(х) = ах а hello_html_51d85658.gif0, а ≠ 1


D(g) = ( - ∞; + ∞)


Е(g) = (0; +∞)



Что вы можете сказать о монотонности показательной функции?

Так как показательная функция монотонна на множестве всех действительных чисел, то она имеет обратную функцию с областью определения, которой является множество всех положительных чисел и множеством значений, которым являются все действительные числа.

g(х) = ах а hello_html_51d85658.gif0, а ≠ 1

f(х)

D(g) = ( - ∞; + ∞)

D(f) =(0; +∞)

Е(g) = (0; +∞)

Е(f) = ( - ∞; + ∞)


Найдём формулу функции, которая является обратной для у = ах.

logау = logа ах; logау = х logаа; logау = х

Таким образом, обратная функция имеет вид у = logах, где а hello_html_51d85658.gif0, а ≠ 1 или f(х) = logах

Функцию такого вида называют логарифмической.

Задание: заполните вторую часть таблицы.

g(х) = ах а hello_html_51d85658.gif0, а ≠ 1

f(х) = logах а hello_html_51d85658.gif0, а ≠ 1

D(g) = ( - ∞; + ∞)

D(f) = (0; +∞)

Е(g) = (0; +∞)

Е(f) = ( - ∞; + ∞)


Что вы знаете о графиках взаимообратных функций? (они симметричны относительно прямой у = х – биссектрисы I и II координатных углов)

Постройте схематически график логарифмической функции, используя график показательной функции, с основанием

0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1 а hello_html_51d85658.gif 1


hello_html_m290a3dcc.pnghello_html_2dc467c4.png

Какая характерная точка для графика логарифмической функции? Почему? (точка (1; 0), т.к. logа1 = 0)


Задание: опишите свойства логарифмической функции с основанием

I вариант: 0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1

II вариант: а hello_html_51d85658.gif 1 .

Схема:

1. Область определения

2. Множество значений

3. Чётность

4. Периодичность

5. Нули функции

6. Монотонность

7. Пересечение с осями координат

8. Наибольшее значение

9. Наименьшее значение

10. Промежутки знакопостоянства.

Работа в парах:

В чём вы видите отличие в свойствах функций по основанию 0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1 и а hello_html_51d85658.gif 1.

В чём сходство?

Для проверки (по компьютеру):

Поставьте себе оценку за работу.

свойство

0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1

а hello_html_51d85658.gif 1.

1. Область определения

R+

2. Множество значений

R

3. Чётность

Ни четная, ни нечётная

4. Периодичность

непериодическая

5. Нули функции

у = 0 при х = 1

6. Монотонность

убывающая

возрастающая

7. Наибольшее значение

нет

8. Наименьшее значение

нет

9. Промежутки знакопостоянства

у hello_html_51d85658.gif0 при 0 hello_html_48c8162d.gifхhello_html_48c8162d.gif1

у hello_html_48c8162d.gif0 при х hello_html_51d85658.gif 1

у hello_html_51d85658.gif0 при х hello_html_51d85658.gif 1

у hello_html_48c8162d.gif0 при 0 hello_html_48c8162d.gifхhello_html_48c8162d.gif1


Y. Закрепление. (задание даётся через компьютер)

1. Обсудить всем классом:

Сравните основания логарифмов, если

logа 15 > logв 10 ; logа 15 < logв 10


2. III группа: Определите, какие из перечисленных функций являются возрастающими, убывающими?

функция

монотонность

объяснение

у = log2 х



у = log0,5 (2х +5)



у = lg hello_html_m431875e6.gif



у= ln (х +2)




I и II группы: между числами m и n поставьте знак hello_html_51d85658.gif или hello_html_48c8162d.gif, если:



объяснение

log0,5m hello_html_51d85658.gif log0,5n



log8m hello_html_51d85658.gif log8 n



log2,5m hello_html_48c8162d.gif log2,5n



log0,2 m hello_html_48c8162d.gif log0,2 n




3. Постройте схематически график функции

I группа: у = hello_html_6062d615.gif

II группа: у = - log2 х

III группа: у = log1/2 (х + 2) – 3

Класс: Задайте отвечающему по два вопроса по свойствам функции, график которой построен.


YI. Дома:

1. Постройте по точкам графики функций у = log2 х и у = hello_html_2d2955e7.gif.

2. Как изменится расположение графика функции с увеличением (уменьшением) основания логарифма?

3. Найдите процессы, явления, которые можно описать с помощью логарифмической функции.


4. Для желающих: Подумайте, как эта таблица могла бы помочь для запоминания промежутков знакопостоянства логарифмической функции:

а hello_html_51d85658.gif 1 х hello_html_51d85658.gif 1

у hello_html_51d85658.gif 0

0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1 0 hello_html_48c8162d.gifхhello_html_48c8162d.gif1

у hello_html_51d85658.gif 0

а hello_html_51d85658.gif 1 0 hello_html_48c8162d.gifхhello_html_48c8162d.gif1

у hello_html_48c8162d.gif0

0 hello_html_48c8162d.gifа hello_html_48c8162d.gif1 х hello_html_51d85658.gif 1

у hello_html_48c8162d.gif0


YII. Итог урока.

1. Что нового узнали на уроке?

2. Чему научились?

3. Логарифмическая «Комедия 2 hello_html_51d85658.gif3».

hello_html_m35cfe876.gif; hello_html_2591b08f.gif

Большему числу соответствует больший логарифм: lghello_html_m2f321edb.gif.

По свойствам логарифма.hello_html_36b9fcb9.gif

Разделим на lg hello_html_m3d4efe4.gif. Получим: 2 hello_html_51d85658.gif3.

Где ошибка?




4. В заключении урока хочу прочитать стихотворение:


«Музыка может возвышать или умиротворять душу,

Живопись – радовать глаз,

Поэзия – пробуждать чувства,

Философия – удовлетворять потребности разума,

Инженерное дело – совершенствовать материальную сторону жизни людей,

А математика способна достичь всех этих целей»

Так сказал американский математик Морис Клайн.

Спасибо за урок!



Выберите курс повышения квалификации со скидкой 50%:

Краткое описание документа:

На данном уроке ученики закрепляют понятие функции, знакомятся с логарифмической функцией, ее свойствами и графиком. Учатся различать графики функции по основанию логарифма. Рассматривают взаимное расположение графиков логарифмической и показательной функции. На основе свойств функции переходят к сравнению выражений с логарифмами, повторяют понятие области определения функции и его применение к логарифмической.

Автор
Дата добавления 30.04.2015
Раздел Математика
Подраздел Конспекты
Просмотров687
Номер материала 259841
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх