Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Конспект урока математике на тему "Делители и кратные" (6 класс)

Конспект урока математике на тему "Делители и кратные" (6 класс)

  • Математика

Поделитесь материалом с коллегами:

Конспект урока по математике, 6 класс

(Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд)

Раздел: «Делимость чисел»


Тема урока: «Делители и кратные»


Цели:

- повторить сложение и вычитание десятичных дробей;

- ввести понятие делителей и кратных чисел;

- научить находить делители числа и кратные числа;

- развивать логическое мышление учащихся.

Ход урока

I. Повторение материала.

I. Вспомнить правила действий с десятичными дробями:

а) сложение и вычитание десятичных дробей;

б) умножение десятичных дробей;

в) деление десятичной дроби на натуральное число, на десятичную дробь.


П. Изучение нового материала.

1. Когда одно число делится на другое без остатка, то говорят, что первое число делится на второе. Каждое натуральное число делится на 1 и само на себя. Многие натуральные числа делятся не только на 1 и сами на себя, но и на другие натуральные числа. Например, число 15 делится на 1, на 3, на 5, на 15. Эти числа называются делителями числа 15.

2. Решение задачи.

60 апельсинов можно разделить поровну между 6 ребятами. Каждый получит по 10 апельсин. А если надо разделить (не разрезая) 60 апельсин между 7 ребятами, то каждый получит по 8 апельсинов, а еще 4 апельсина останутся. Говорят, что число 6 является делителем числа 60, а число 7 не является делителем числа 60.

3. Определение делителя натурального числа а.

4. Устно решить задачу 1.

5. Задача № 2 (а, б) из учебника на странице 4.

6. Решение задачи.

Пусть на столе лежат пачки, в каждой из которых по 8 печений.

а) Не раскрывая пачек, сколько можно взять печений?

б) Можно ли взять 18 печений, 25 печений?

в) Говорят, что числа 8, 16, 24, 48 кратны числу 8, а числа -18, 25 не кратны числу 8.

7. Определение кратного натуральному числу а. Слово «крата» – старинное русское слово, означающее «раз».

8. Любое натуральное число имеет бесконечно много кратных. Их можно получить, если данное число умножить на 1, на 2, на 3, на 4 и т. д. Например, кратными числу 7 будут числа:

7 · 1 =7; 7 · 2= 14; 7 · 3 = 21 и т. д.

9. Число 0 кратно любому натуральному числу, так как 0 де­лится без остатка на любое натуральное число.

10. Устно решить задачи № 3 (а – е), с. 4 учебника.

11. Учащиеся самостоятельно читают текст под рубрикой Г (раздел «Говори правильно») на странице 5 учебника.

III. Закрепление изученного материала.

1. Решить № 6 и № 7 на доске и в тетрадях.

2. Задачу № 8 учащиеся решают, комментируя решение с места.

3. Повторить понятие координатного луча и выполнить задания № 10 (рис. 1), № 17.

IV. Итог урока.

Ответить на вопросы:

а) Какое натуральное число называют делителем данного числа?

б) Какое натуральное число является делителем каждого натурального числа?

в) Какое число является наибольшим делителем данного натурального числа?

г) Какое число называют кратным данному натуральному числу?

д) Какое число является кратным любому натуральному числу?

Домашнее задание: изучить пункт 1; решить № 29, № 30 (а; б).


Автор
Дата добавления 25.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров990
Номер материала ДВ-483866
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх