Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Конспект урока на тему "Обратные тригонометрические функции"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Конспект урока на тему "Обратные тригонометрические функции"

библиотека
материалов

Урок алгебры в 11-м классе "Обратные тригонометрические функции"

Тип урока: комбинированный, состоит из 7 учебно-воспитательных моментов: организационный момент, повторение изученного, подготовка к изучению материала, изучение и закрепление нового материала, тестовая работа, итог урока.

Цели урока:

  • сформировать умение применять определения аркфункций для нахождения тригонометрических функций от аркфункций;

  • развивать познавательный интерес учащихся к предмету через систему нестандартных задач;

  • воспитывать нестандартно, логически мыслящую личность.

Оборудование: доска, таблицы, компьютер, мультимедийная установка, экран, учебник.

Ход урока

I. Организационный момент.

Ребята, сегодня мы проводим урок - обобщение по теме: "Обратные тригонометрические функции". Материал этого параграфа в учебнике вынесен для самостоятельного изучения, но поскольку задания с аркфункциями стали включать в ЕГЭ, я решила не только изучить новый материал на уроке, но обобщить ваши знания по данной теме.

II. Актуализация опорных знаний:

1. Значения аркфункций:

Вспомните, для чего в 10 классе были введены понятия арксинуса, арккосинуса, арктангенса? (Для решения тригонометрических уравнений).

Давайте вспомним формулы, по которым решаются простейшие тригонометрические уравнения.

Слайд1:

http://festival.1september.ru/articles/524932/img1.jpg

вопросы к классу: -формула нахождения корней уравнения соs х=а;

-дать определение арккосинуса числа а ;

Слайд 2 :(вопросы аналогичные предыдущим)

http://festival.1september.ru/articles/524932/img2.jpg

Слайд 3

http://festival.1september.ru/articles/524932/img3.jpg

Слайд 4

http://festival.1september.ru/articles/524932/img4.jpg

Заполним таблицу значений аркфункций: Слайд 5

http://festival.1september.ru/articles/524932/img5.jpg

Пользуясь ей решим следующие упражнения:

1) arcsin(1/v2)-4 arcsin1=

2) arccos(-1)- arcsin(-1)=

3)4 arctg(-1)+3 arctg(v3)=

Из ЕГЭ:

1) arcsin(sin http://festival.1september.ru/articles/524932/img14.gif/3)+ arcsin (-v3/2)=

3)10cos(arctg(v3))=

Проверим получившиеся ответы: Слайд 6

http://festival.1september.ru/articles/524932/img6.jpg

2.Вспомним формулы, связывающие аркфункции с тригонометрическими функциями:

Слайд 7

http://festival.1september.ru/articles/524932/img7.jpg

С помощью них вычислим устно:

sin(arcsin(-1/5))=

sin(http://festival.1september.ru/articles/524932/img14.gif+ arcsin 3/4)=

(из ЕГЭ) 5 sin(http://festival.1september.ru/articles/524932/img14.gif+ arcsin (-3/5)=

cos(arccos(-2/3))=

sin(http://festival.1september.ru/articles/524932/img14.gif/2+ arccos 1/3)=

tg(arctg(-3))=

сtg(http://festival.1september.ru/articles/524932/img14.gif/2+ arctg 6)=

3. Нахождение значения тригонометрической функции от аркфункции.

1. Сильный ученик:

sin(arccos v3/4)=

2.(Из ЕГЭ) - сильный ученик

5v2 sin(http://festival.1september.ru/articles/524932/img14.gif/2- arctg(-1/7))=

в) Решим вторым способом следующие примеры:

1) tg(arccos (-1/3))=

2) 3v5 tg(arcsin(2/7)=

3) по вариантам:

а) сtg(arccos (2/5))=

б) v15 tg(arcsin(1/4))

4) Средний ученик:

sin(2 arctg 5)=

III. Изучение нового материала:

В материалах для подготовки к ЕГЭ есть задания, в которых необходимо знать свойства обратных тригонометрических функций. Обратные тригонометрические функции это математические функции, являющиеся обратными к тригонометрическим функциям. Название обратных тригонометрических функций образуется от названия соответствующей ей тригонометрической функции добавлением приставки "арк-" (в переводе с латинского - дуга).

Пусть дана функция у=sin х. На всей области определения она являются кусочно-монотонной, и, значит, обратное соответствие у=arcsin х функцией не является.

Поэтому мы рассмотрим отрезок, на котором она возрастает и принимает все свои значения на [-http://festival.1september.ru/articles/524932/img14.gif|2;http://festival.1september.ru/articles/524932/img14.gif|2]. Так как для функции у=sin х на интервале

[-http://festival.1september.ru/articles/524932/img14.gif|2;http://festival.1september.ru/articles/524932/img14.gif|2] каждому значению аргумента соответствует единственное значение функции, то на этом отрезке существует обратная функция у=arcsin х, график которой симметричен графику у=sin х на отрезке [-1;1] относительно прямой у=х.

http://festival.1september.ru/articles/524932/img9.jpg

http://festival.1september.ru/articles/524932/img10.jpg

Пусть дана функция у=cos х. На всей области определения она являются кусочно-монотонной, и, значит, обратное соответствие у=arccos х функцией не является.

Поэтому мы рассмотрим отрезок, на котором она убывает и принимает все значения на [0;?]. Так как для функции у=cos х на интервале [0;?] каждому значению аргумента соответствует единственное значение функции, то на этом отрезке существует обратная функция у=arccos х, график которой симметричен графику у=cos х на отрезке [-1;1] относительно прямой у=х.

 http://festival.1september.ru/articles/524932/img11.jpg

http://festival.1september.ru/articles/524932/img12.jpg

http://festival.1september.ru/articles/524932/img13.jpg

2.Выполняем задания:

1. Найти число целых значений функции у= 12arccos х. (Объясняю сама)

0http://festival.1september.ru/articles/524932/img14.gif, тогда 0<12arccos х<12http://festival.1september.ru/articles/524932/img14.gif

12http://festival.1september.ru/articles/524932/img14.gif=123,14=37,8, значит, целых значений будет 38.

Ответ:38

2. Найти число целых значений функции у=5 arctg х. - (сильный ученик).

3. Самостоятельно:

у=1,7 arсctg х.

4. Найти наибольшее целое число, входящее в область значений функции у= 6 arcсtg(|sin х|).

5. Найти разность между наибольшим и наименьшим значениями функции:

у=24/http://festival.1september.ru/articles/524932/img14.gif arcsin(sin хcos х)

IV. Дом.задание:

Вычислите:

  • sin(2 arcsin 3/5)

  • sin(arccos 1/3+arccos 2/3)

  • sin( http://festival.1september.ru/articles/524932/Image168.gif arccos 5/13)

2*.Постройте графики функций:

а) у=arccos|х|;

б) у=arccos х +arcsin х;

в) |у|=arctg х.

3.* Найдите разность между наибольшим и наименьшим значениями функции:

у=http://festival.1september.ru/articles/524932/Image169.gifarccos (sin х cos х)

4*. Найдите наименьшее целое число, входящее в область значений функции:

у=40arcctg(cos х).

V. Рефлексия. Оценки учащихся за урок.

Приложение 1.




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 20.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров593
Номер материала ДВ-472895
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх