Инфоурок / Математика / Конспекты / Конспект урока на тему: "СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ(закрепление)" (10 класс)
Только сейчас Вы можете пройти дистанционное обучение на курсах повышения квалификации прямо на сайте "Инфоурок" со скидкой 40%. По окончании курсов Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Открыт приём заявок на новые курсы повышения квалификации:

- «Профилактическая работа в ОО по выявлению троллинга, моббинга и буллинга среди подростков» (108 часов)

- «Психодиагностика в образовательных организациях с учетом реализации ФГОС» (72 часа)

- «Укрепление здоровья детей дошкольного возраста как ценностный приоритет воспитательно-образовательной работы ДОО» (108 часов)

- «Профориентация школьников: психология и выбор профессии» (108 часов)

- «Видеотехнологии и мультипликация в начальной школе» (72 часа)

- «Патриотическое воспитание дошкольников в системе работы педагога дошкольной образовательной организации» (108 часов)

- «Психолого-педагогическое сопровождение детей с синдромом дефицита внимания и гиперактивности (СДВГ)» (72 часа)

- «Использование активных методов обучения в ВУЗе в условиях реализации ФГОС» (108 часов)

- «Специфика преподавания русского языка как иностранного» (108 часов)

- «Экологическое образование детей дошкольного возраста: развитие кругозора и опытно-исследовательская деятельность в рамках реализации ФГОС ДО» (108 часов)

- «Простые машины и механизмы: организация работы ДОУ с помощью образовательных конструкторов» (36 часов)

- «Федеральный государственный стандарт ООО и СОО по истории: требования к современному уроку» (72 часа)

- «Организация маркетинга в туризме» (72 часа)

Также представляем Вашему вниманию новый курс переподготовки «Организация тренерской деятельности по физической культуре и спорту» (300/600 часов, присваиваемая квалификация: Тренер-преподаватель).

Смотреть список всех 216 курсов со скидкой 40%

Конспект урока на тему: "СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ(закрепление)" (10 класс)

библиотека
материалов

Урок на тему:
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ

Цель: закрепить навык использования признака скрещивающихся прямых при решении задач.

Ход урока

I. Опрос у доски (знание теорем, их доказательств).

II. Проверка домашнего задания.

III. Устная работа.

1. Какие прямые называются скрещивающимися?

2. Сформулируйте признак скрещивающихся прямых.

3. Выясните взаимное расположение прямых:

АD и В1С1;

ВС и СС1;

СС1 и АВ;

СС1 и АА1;

А1В1 и СD;

MN и АВ;

MN и А1В1;

MN и АD;

MN и В1С1.

4. Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны?

5. Две прямые параллельны некоторой плоскости. Могут ли эти прямые: а) пересекаться? б) быть скрещивающимися?

6. Могут ли скрещивающиеся прямые а и b быть параллельными прямой с? Ответ обоснуйте.

7. Даны две скрещивающиеся прямые а и b. Точки А и А1 лежат на прямой а, точки В и В1 – на прямой b. Как будут расположены прямые АВ и А1В1?

8. Прямая а скрещивается с прямой b, а прямая b скрещивается с прямой с. Следует ли из этого, что прямые а и с скрещиваются?

9. Каково должно быть взаимное расположение трех прямых, чтобы можно было провести плоскость, содержащую все прямые?

10. Можно ли провести прямую, пересекающую каждую из трех скрещивающихся прямых?

11. Даны две пересекающиеся плоскости α и β. В плоскости α лежит прямая а, а в плоскости β – прямая b. Лежат ли прямые а и b в одной плоскости, если известно, что они пересекают линию пересечения плоскостей α и β: а) в одной точке; б) в разных точках?

12. Даны две параллельные плоскости α и β. В плоскости α лежит прямая а, а в плоскости β – прямая b. Каковы возможные случаи взаимного расположения прямых а и b?

13. В плоскости двух параллельных (пересекающихся) прямых а и b дана точка С, не лежащая на этих прямых. Прямая с проходит через точку С. Как может быть расположена прямая с относительно прямых а и b?

IV. Решение задач.

39.

Дано: АВ СD.

Доказать, что AD BC.

Доказательство

1. (A, C, D) = α.

2. hello_html_m62cdb2cf.gif

3. hello_html_m6ab56cee.gif (по признаку).

41.

Дано: а b.

Может ли а || с и b || c.

Пусть а || с и b || c, тогда а || b. Противоречие условию.

42.

Дано: ABCD – параллелограмм, ABEK – трапеция, ЕKhello_html_m3a7ee377.gif(ABC).

а) Выясните взаимное расположение прямых CD и ЕK.

б) Найдите РABEK, если АВ = 22,5 см, ЕK = 27,5 см, в трапецию можно вписать окружность.

1. hello_html_373261c7.gif

2. Так как в трапецию можно вписать окружность, то АВ + ЕK =
= АK + ВЕ
. РABEK = 2 ∙ (22,5 + 27,5) = 2 ∙ 50 = 100 см.

43.

Дано: ABCD – пространственный четырехугольник. М, N, Р, K – середины АС, АD, ВD, ВС соответственно.

Доказать, что MNPK – параллелограмм.

1. МK – средняя линия Δ АВС hello_html_m226e8471.gif
hello_html_m226e8471.gif МK || АВ, МK = hello_html_6fc2d0b1.gifАВ.

2. NP – средняя линия Δ АDB hello_html_m226e8471.gif NP || АВ, NP = hello_html_6fc2d0b1.gifАВ.

3. hello_html_m562868a8.pngпараллелограмм.

101.

Дано: ABCD – тетраэдр.

АМ = МС, AF = FB, AN = ND,

ВР = РD, СK = KВ, DE = ЕC.

Доказать, что MP hello_html_m5ecafa.gifNK hello_html_m5ecafa.gifEF = Q.

Доказательство

1. MNPK – параллелограмм (см. № 43) hello_html_m226e8471.gif
hello_html_m226e8471.gif MP hello_html_m5ecafa.gifNK = Q, MQ = QP.

2. MNPK – параллелограмм (аналогично) hello_html_m226e8471.gif МР hello_html_m5ecafa.gifEF = Q1, MQ1 =
= Q
1Р.

3. hello_html_m6c2f79ee.png

4. MP hello_html_m5ecafa.gifNK hello_html_m5ecafa.gifEF = Q.

Домашнее задание: теория (п. 7), №№ 38, 93, 94, 100.



Общая информация

Номер материала: ДБ-098458

Похожие материалы