1140272
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаКонспектыКонспект урока на тему "Сумма геометрической прогрессии"

Конспект урока на тему "Сумма геометрической прогрессии"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.


МОУ «Лесно-Конобеевская средняя школа»







Сумма n первых членов арифметической прогрессии

Сценарий урока алгебры в 9 классе по учебнику Ю.Н. Макарычева под ред. С.А. Теляковского, 2009 г.












Учитель математики 1 категории:

Закурдаева Наталья Сергеевна











2013 год




Цели урока:

  • Образовательная:

Вывести формулу суммы n первых членов геометрической прогрессии;

  • Развивающая:

Способствовать формированию умений работать по алгоритму.

  • Воспитательная:

- способствовать формированию отношения к математике как к части общечеловеческой культуры;

- способствовать формированию личностных компетенций учащихся;

Задачи урока:

  • Научиться применять формулу суммы n первых членов геометрической прогрессии;

  • Показать применение формул суммы n первых членов геометрической прогрессии при решении практических задач.

  • Способствовать развитию ключевых компетенции учащихся.


Тип урока: урок ознакомления с новым материалом

Технологии обучения: проблемное обучение

Формы организации учебной деятельности: Индивидуальная, фронтальная, групповая

Оборудование урока: компьютер и мультимедийное оборудование;

Методическое сопровождение: компьютерная презентация


Сценарий урока


  1. Организационный момент

  2. Актуализация знаний



Устная работа

Вопросы

  • Какая последовательность называется арифметической прогрессией?

  • Какая последовательность называется геометрической прогрессией?

  • Назовите формулу n-го члена геометрической прогрессии

Решить задания из сборника ГИА-2013

(слайд1)

hello_html_76705c31.png

(Слайд 2)

hello_html_m61c6eb11.png

(слайд 3)

hello_html_m35f21b8e.gif

Каких знаний вам не хватает для того, чтобы ответить на вопрос задачи, для 10 или 20 членов прогрессии?


  1. Постановка целей урока

Какая же цель нашего урока?

- получить формулу суммы n первых членов геометрической прогрессии

- научиться её применять

  1. Формулирование темы урока (слайд 4)

Итак, тема нашего урока: (формулируют учащиеся сами) «Формула суммы n первых членов геометрической прогрессии»

  1. Экскурс в историю (слайд 5)

Прежде чем приступить к выводу формулы, я хочу вам прочитать легенду о шахматной доске


ЛЕГЕНДА О ШАХМАТНОЙ ДОСКЕ


Шахматы - одна из самых древних игр. Она существует уже многие века, и неудивительно, что с нею связаны различные предания, правдивость которых, за давностью времени, невозможно проверить.

Одну из подобных легенд я и хочу рассказать. Чтобы понять её, не нужно вовсе уметь играть в шахматы: достаточно знать, что игра происходит на доске, разграфлённой на 64 клетки (попеременно чёрные и белые).


Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищён её остроумием и разнообразием возможных в ней положений.

Узнав, что она изобретена одним из его подданных, царь приказал его позвать, чтобы лично наградить за удачную выдумку. Изобретатель, его звали Сета, явился к трону повелителя. Это был скромно одетый учёный, получавший средства к жизни от своих учеников.

Я желаю достойно вознаградить тебя, Сета, за прекрасную игру, которую ты придумал, - сказал царь.

Мудрец поклонился.

Я достаточно богат, чтобы исполнить самое смелое твоё пожелание, - продолжал царь. — Назови награду, которая тебя удовлетворит, и ты получишь её.

Сета молчал.

Не робей, - одобрил его царь,- Выскажи своё желание. Я не пожалею ничего, чтобы исполнить его.

Велика доброта твоя, повелитель. Но дай срок обдумать ответ. Завтра, по зрелому размышлению, я сообщу тебе мою просьбу.

Когда на другой день Сета снова явился к ступеням трона, он удивил царя беспримерной скромностью своей просьбы.

Повелитель, - сказал Сета, - прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно.

Простое пшеничное зерно? - изумился царь.

Да, повелитель. За вторую клетку прикажи выдать 2 зерна, за третью 4, за четвёртую - 8, за пятую - 16, за шестую - 32 …

Довольно, - с раздражением прервал его царь. — Ты получишь свои зёрна за все 64 клетки доски, согласно твоему желанию: за каждую вдвое больше предыдущей. Но знай, что просьба твоя недостойна моей щедрости. Прося такую ничтожную награду, ты непочтительно пренебрегаешь моею милостью. Поистине, как учитель, ты мог бы показать лучший пример уважения к доброте своего государя. Ступай. Слуги мои вынесут тебе твой мешок с пшеницей. Сета улыбнулся, покинул залу и стал дожидаться у ворот дворца.

За обедом царь вспомнил об изобретателе шахмат и послал узнать, унёс ли уже безрассудный Сета свою жалкую награду.

Повелитель, - был ответ, - приказание твоё исполняется. Придворные математики исчисляют число следуемых зёрен.

Царь нахмурился. Он не привык, чтобы повеления его исполнялись так медлительно. Вечером, отходя ко сну, царь ещё раз осведомился, давно ли Сета со своим мешком пшеницы покинул ограду дворца.

Повелитель, - ответили ему, - математики твои трудятся без устали и надеются ещё до рассвета закончить подсчёт.

Почему медлят с этим делом? - гневно воскликнул царь. — Завтра, прежде чем я проснусь, всё до последнего зерна должно быть выдано Сете. Я дважды не приказываю. Утром царю доложили, что старшина придворных математиков просит выслушать важное донесение. Царь приказал ввести его.

Прежде чем скажешь о твоём деле, - объявил Шерам, - я желаю услышать, выдана ли, наконец, Сете та ничтожная награда, которую он себе назначил.

Ради этого я и осмелился явиться перед тобой в столь ранний час, - ответил старик. — Мы добросовестно исчислили всё количество зёрен, которое желает получить Сета. Число это так велико ... — Как бы велико оно не было, - надменно перебил царь, житницы мои не оскудеют. Награда обещана и должна быть выдана ...

Не в твоей власти, повелитель, исполнять подобные желания. Во всех амбарах твоих нет такого числа зёрен, какое потребовал Сета. Нет его и в житницах всего государства. Не найдётся такого числа зёрен и на всём пространстве Земли. И если желаешь непременно выдать обещанную награду, то прикажи превратить земные царства в пахотные поля, прикажи осушить моря и океаны, прикажите растопить льды и снега, покрывающие далёкие северные пустыни. Пусть всё пространство их сплошь будет засеяно пшеницей. И всё то, что родиться на этих полях, прикажи отдать Сете. Тогда он получит свою награду.

С изумлением внимал царь словам старца.

Назови же мне это чудовищное число, - сказал он в раздумье…


Вопрос к классу:

Сколько же нужно было отдать зерна?

Что представляет собой последовательность зёрен на каждой клетке доски?

- геометрическую прогрессию

Чему равен 1-й член этой прогрессии и знаменатель?

- 1 и 2

Что нужно найти?

- сумму 64 членов

Как это сделать?

- затруднение

6. Актуализация новых знаний (слайд 6)

Попробуем поступить следующим способом:

  • S=1+2+22+23+…+262+263

Умножим обе части записанного равенства на знаменатель прогрессии, получим:

  • 2S=2+22+23+…+262+263+264

Вычтем почленно из второго равенства первое и проведём упрощение:

  • 2S-S=(2+22+23+…+262+263+264)-(1+2+22+23+…+262+263),

S=264-1.

Если подсчитать, то результат равен (слайд 7)

18 квинтильонов 446 квадрильонов 744 триллиона 73 биллиона 709 миллионов 551 тысяча 615 зёрен


Масса такого количества пшеничных зерен больше триллиона тонн.

Это заведомо превосходит количество пшеницы, собранной человечеством до настоящего времени.

Если желаете представить себе всю огромность этого числового великана, прикиньте, какой величины амбар потребовался бы для вмещения подобного количества зерен. Известно, что кубический метр пшеницы вмещает около 15 миллионов зерен. Значит, награда шахматного изобретателя должна была бы занять объем примерно в 12 000 000 000 000 куб. м, или 12 000 куб. км. При высоте амбара 4 м и ширине 10 м длина его должна была бы простираться на 300 000 000 км, то есть вдвое дальше, чем от Земли до Солнца!

Индийский царь не в состоянии был выдать подобной награды. Но он легко мог бы, будь он силен в математике, освободиться от столь обременительного долга. Для этого нужно было лишь предложить Сете самому отсчитать себе зерно за зерном всю причитавшуюся ему пшеницу.

В самом деле, если бы Сета, принявшись за счет, вел его непрерывно день и ночь, отсчитывая по зерну в секунду, он в первые сутки отсчитал бы всего 86 400 зерен. Чтобы отсчитать миллион зерен, понадобилось бы не менее 10 суток неустанного счета. 1 куб. м пшеницы он отсчитал бы примерно в полгода: это дало бы ему всего 5 четвертей. Считая непрерывно в течение 10 лет, он отсчитал бы себе не более 100 четвертей. Вы видите, что, посвятив счету даже весь остаток своей жизни, Сета получил бы лишь ничтожную часть потребованной им награды.

  1. Получение новых знаний. Работа в парах

Попробуйте теперь сами вывести формулу суммы n первых членов произвольной геометрической прогрессии. Воспользуйся тем же приёмом, с помощью которого была вычислена сумма S зёрен.

Пусть дана геометрическая прогрессия (bn). Обозначим сумму n первых членов через Sn: (слайд 8).

  • Sn =b+b2+…+bn-1+bn (1)

Умножим обе части этого равенства на q:

  • Snq=bq + b2q+b3q+…+bn-1q +bnq.

Учитывая, что bq=b2, b2q= b3, b3q=b4 ,…, bn-q=bn , получим

  • Sn q =b2+ b3 +b4 +…+bn-1+ bn + bnq (2)

Вычтем почленно из равенства (2) равенство (1) и приведём подобные члены:

  • SnqSn =(b2+b3+ …+bn-+bn + bnq)-(b+b2+…+bn-+bn)= bnq- b

Shello_html_mc70c2af.gifn(q –1)= bnq- b Отсюда следует, что при q≠1

(Слайд 9)

Подведем итог:

Мhello_html_f6357dd.gifы получили формулу суммы первых n членов геометрической прогрессии, в которой q ≠1


q≠1 (I)



Пhello_html_m600964db.gifри решении задач удобно пользоваться формулой записанной в другом виде. Подставим в формулу (1) вместо bn выражение bqn-1. Получим:


q≠1 (II)


Если q=1, то все члены прогрессии равны первому члену и Sn=nb1.


  1. Физминутка


Я буду называть последовательность. Если она является арифметической прогрессией, то нужно подпрыгнуть столько раз, чему равна её разность, если геометрическая прогрессия, то хлопнуть в ладоши столько раз сколько составит её знаменатель, если прогрессия не является прогрессией, то нужно присесть.

1) 1,2,3, 4, ... (подпрыгнуть 1 раз)

2) 5, 25, 125, 625,.. (хлопнуть 5 раз)

3) 1, 3, 8, 10, ... (присесть)

4) 2, 4, 8, 16, 32,.. (хлопнуть 2 раза)

5) 3, 6, 9, 12, 15, ... (подпрыгнуть 3 раза)


9. Первичное закрепление. Работа с учебником (слайд 10)

  • Решение следующих номеров из учебника (стр.161):

648(а) , №649(а, в) , №650(а)

  • Групповая работа. Задача на практическое применение формулы. Задача о бактериях (слайд 11)

В благоприятных условиях бактерии размножаются так, что на протяжении примерно 20 минут одна из них делится на две. Указать количество бактерий, рождённых одной бактерией за 3 часа 20 минут.

Решение:

b1=1; q=2; n=10.

S7=1023.

Информационная справка

Оптимальная температура для большинства бактерий, которые являются причиной инфекций и болезней носителя (патогенные бактерии), около 38°С. В большинстве случаев можно значительно снизить скорость размножения бактерий, если понизить температуру окружающей среды.


10. Самостоятельная работа с последующей проверкой (слайд 12)

1) Найдите сумму пяти первых членов геометрической прогрессии, если первый член равен 2, а знаменатель прогрессии равен 0,5 (Ответ:31/8 или 3,875)

2) Найдите сумму пяти первых членов геометрической прогрессии 2; 6;… (Ответ:242)

11. Рефлексия

Что нового вы сегодня узнали на уроке?

Как вы оцениваете свою работу на уроке?

Достигли ли мы поставленных в начале урока целей?

12. Домашнее задание (слайд 13)

Выучить формулы; №648(б) , №649(б, г) , №650(б). Продолжить выполнение проектной работы по теме «Прогрессии»

На повторение: №659, 660

Для желающих: 1)Изобразить героев легенды о шахматной доске.

2) Задача о богаче.

Богач вернулся домой радостный: у него была счастливая встреча, сулившая большие выгоды. Повстречался ему в пути незнакомец, предложивший сделку: «Я буду целый месяц приносить тебе ежедневно по 100000 р., но недаром. В первый день ты уплатишь мне 1 к., во второй – 2 к., в третий – 4 к. и так целый месяц» Богач согласился. Кто прогадал – богач или незнакомец?



Литература:

  1. Алгебра. 9 класс. Ю.Н. Макарычев и др.; под редакцией С.А.Теляковского, М.: «Просвещение» 2009 г.

  2. ГИА 2013. Математика. 9 класс. Типовые тестовые задания. Ященко И.В., Шестаков С.А. и др., М.: Издательство «Экзамен», 2013 г.

  3. Тесты по алгебре: 9 класс: к учебнику Ю.Н. Макарычева и др. М.: Издательство «Экзамен», 2011 г.

  4. Интернет-ресурсы:

    1. http://www.poznovatelno.ru/opit/chisla/155.html

    2. http://images.yandex.ru/

Общая информация

Номер материала: ДВ-276856

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.