Инфоурок Физика КонспектыКонспект урока по физике "Распространение звука в различных средах. Эхо. Резонанс. Сейсмограф. Фонограф"

Конспект урока по физике "Распространение звука в различных средах. Эхо. Резонанс. Сейсмограф. Фонограф"

Скачать материал

7 класс Дата____________________

Урок № _____

Тема урока: Распространение звука в различных средах. Эхо. Резонанс. Сейсмограф. Фонограф.

Цели:

  • образовательная: сформировать понятия эха, звукового резонанса; сформировать представление распространения звуковых волн в различных средах;

  • развивающая: развивать умения определять скорость звука, расстояния от источника звука до нас;

  • воспитательная: воспитывать интерес к предмету, дисциплину на уроке.

Тип урока: формирование новых знаний.

Оборудование: мультимедийная презентация, ПК.

Ход урока

1. Организационный момент.

Приветствие с учащимися, проверка присутствующих.

2. Актуализация знаний.

Давайте вспомним:

  • Что называют колебаниями?

  • Что называют волнами?

  • Какие виды волн Вам известны?

3. Изучение нового материала

Распространение звука

Мhello_html_19e1d111.pngногие звуки проходят большие расстояния, прежде чем достигнут наших ушей. Как же распространяется звук? Необходима ли среда – газ, жидкость или твердое тело – для передачи звука?

Роберт Бойль в 1660 г. проверил, передается ли звук в вакууме. Он поместил часы в стеклянный сосуд. Издаваемый часами звук стал тише, но все же вполне различим. Затем он откачал воздух из сосуда и убедился, что ничего не слышит. Этот опыт показывает, что для распространения звука необходима среда.

Сhello_html_m1868d6c.pngреда, отделяющая нас от колеблющихся тел – это обычно воздух. Но звук может также распространяться в жидкой и твердой среде. Под водой хорошо слышны звуки гребных винтов теплоходов, удары камней и т.д. Приложив ухо к железнодорожному рельсу, можно услышать звук движущегося поезда, когда другим способом его нельзя услышать или увидеть.

Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

Иhello_html_m64005bb5.pngтак, звук может распространяться в любой среде – твердой, жидкой или газообразной, но не может распространяться в вакууме.

Как же среда проводит звук? Колебания источника звука передаются находящимся около него частицам среды, например воздуха. Эти частицы передают колебания соседним частицам и т.д. В результате в среде образуются звуковые волны, действующие на барабанную перепонку уха, колебания которой и воспринимаются человеком. Звуковые волны являются продольными волнами сжатия и разрежения.

Звуковые волны, как и механические, распространяются в пространстве не мгновенно, а с определенной скоростью. Именно поэтому во время грозы мы сначала видим вспышку молнии, а лишь через некоторое время слышим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе намного меньше скорости света, идущего от молнии.. Измерив промежуток времени между моментом возникновения звука и моментом, когда он доходит до нас, можно определить скорость распространения звука: v = S/t.

Скорость звука зависит от температуры среды: с увеличением температуры она возрастает, с уменьшением – убывает. Измерения скорости звука в различных средах показали, что в твердых телах и жидкостях она значительно больше, чем в воздухе.

Таблица 1. Скорость звука в различных средах (при 0° С)

Среда

Скорость, м/с

Воздух при 0° С

331

Воздух при 30° С

350

Вода

1450

Медь

3800

Железо

4900

Стекло

5600

Дерево (ель)

4800

Пробка

430-530

Эхо

Вhello_html_m3ab75fc1.pngы не раз встречались с таким звуковым явлением, как эхо. Эхо образуется в результате отражения звука от различных преград – гор, леса, стен больших зданий и т.д. Но почему мы не слышим эхо в небольшой квартире? Эхо возникает только в том случае, когда отраженный звук воспринимается раздельно от первоначально произнесенного звука. Человеческое ухо воспринимает раздельно следующие один за другим звуки, если промежуток между ними не менее 1/5 с. Если отражающих поверхностей много и они находятся на разных расстояниях от человека, то отраженные звуковые волны дойдут до него в разные моменты времени. В этом случае эхо будет многократным.

Давайте определим, на каком расстоянии от человека должно находиться препятствие, чтобы можно было услышать эхо.

Произнесенный звук должен пройти расстояние до стены, отразить и вернуться обратно, то есть пройти двойное расстояние, не меньше, чем за 1/15 с. Так как скорость звука в воздухе известна, то это расстояние легко рассчитать: v = 340 м/с, t = 1/15 с → S = vt/2 = (340 * 1)/(15 * 2) ≈ 1,1 м.

Нhello_html_m4babebc2.pngа свойстве звука отражаться от гладких поверхностей основано действие рупора – расширяющейся трубы обычно круглого или прямоугольного сечения. При использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.

Известно, что летучие мыши легко ориентируются в темноте, не натыкаясь на окружающие предметы, и даже в темноте ловят добычу. Такой же способностью обладают дельфины, ориентирующиеся в мутной воде. Что же заменяет им зрение?

Оказывается, эти и другие животные способны издавать ультразвуковые колебания и воспринимать их после отражения от препятствий. Острая направленность ультразвука позволяет им определять местоположения и расстояния до окружающих предметов по времени запаздывания отраженного звукового сигнала.

Сhello_html_1f931459.pngпособ определения местоположения тел по отраженным от них ультразвуковым сигналам называется эхолокацией (от лат. localis – местный, то есть определение места с помощью эха).

Эхолокация широко используется в мореплавании. На судах устанавливают гидролокаторы – приборы для распознавания подводных объектов и определения глубины и рельефа дна. Для этой цели на дне судна помещают излучатель и приемник звука. Излучатель дает короткие сигналы. Анализируя время задержки и направление возвращающихся сигналов, компьютер определяет положение и размер объекта отразившего звук.

Уhello_html_78b8dc78.pngльтразвук используется также для обнаружения и определения различных повреждений в деталях машин (пустоты, трещины и т.д.). Прибор, используемый для этой цели называется ультразвуковым дефектоскопом (от лат. defectus – изъян, недостаток, и греч. skopio – смотрю). На исследуемую деталь направляется поток коротких ультразвуковых сигналов, которые отражаются от находящихся внутри нее неоднородностей и, возвращаясь, попадают в приемник. В тех местах, где дефектов нет, сигналы проходят сквозь деталь без существенного отражения и не регистрируются приемником.

Инфразвук – это звук низкой частоты, он не улавливается человеческими органами чувств, но определенные низкие частоты могут вызвать у людей обостренную тревожность и даже психические расстройства. Колебания в этом диапазоне вызываются, например, землетрясениями и распространяются в толще Земли, в воздухе – взрывами. Хотя ухо не воспринимает инфразвук, иногда можно ощутить волны давления, которые его сопровождают. Инфразвук также порождается морем, в этом случае его называют «голосом моря». Образуется он обычно во время шторма в результате периодических сжатий и разрежений воды. Медузы, ракообразные и др. способны воспринимать инфразвуки и задолго до наступления шторма чувствуют его приближение.

Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далекие расстояния. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Распространение инфразвука на большие расстояния в море дает возможность предсказания стихийного бедствия – цунами.

Резонанс

Амплитуда установившихся вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с собственной частотой колебательной системы. Это явление называется резонансом.

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.

hello_html_33b19137.png

Резонанс может быть вызван и звуковыми колебаниями. Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать.

Резонанс может быть вызван и звуковыми колебаниями. Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать.

Пhello_html_m6caa513.pngроведем еще один опыт. Возьмем два камертона с одинаковой собственной частотой колебаний. Ударим один из камертонов молоточком. Зажав его рукой, и прекратив его звучание, мы услышим, как зазвучит второй камертон. Это происходит потому, что второй камертон начинает колебаться под действием дошедших до него звуковых волн, созданных колебаниями первого камертона. Частоты собственных колебаний камертонов одинаковы, поэтому возникает резонанс: амплитуда колебаний второго камертона становится достаточно велика, чтобы звучание было слышно.

Если изменить частоту собственных колебаний второго камертона, например, изменив его размеры, то в этом случае он не будет отзываться на колебания первого камертона, и явления резонанса не произойдет.

Камертоны обычно укрепляют на ящиках, открытых с одного конца. Такие ящики служат резонаторами, усиливающими его звучание. Резонаторами служат также трубы духовых инструментов, трубы органа. В музыкальных инструментах роль резонаторов выполняют части их корпусов. Например, в гитаре, скрипке и других подобных им струнных инструментах резонаторами служат деки, которые усиливают издаваемые струнами звуки и придают звучанию инструмента характерную для него окраску – тембр.

Человек также имеет собственный резонатор – это полость рта, усиливающая издаваемые звуки.

Приборы

Сейсмограф – прибор для записи колебаний земной поверхности. (Чжан Хэн, 130 г.)

hello_html_68635b90.jpg

Фонограф – прибор для записи и воспроизведения звуков. (Т. Эдисон, 1877 г.)

hello_html_mb60004f.jpg

4. Формирование умений и навыков

Решение задач:

  1. Скорость звука в воздухе 340 м/с. Длина звуковой волны в воздухе для самого низкого мужского голоса достигает 4,3 м. Определите частоту колебаний этого голоса.

  2. Источник колебаний с периодом 5 мс вызывает в воде звуковую волну с длиной волны 7,175 м. Определите скорость звука в воде.

  3. На каком расстоянии от корабля находится айсберг, если посланный гидролокатором ультразвуковой сигнал, имеющий скорость 1500 м/с, вернулся назад через 0,4 с?

  4. Через 3 с после вспышки молнии наблюдатель услышал гром. На каком расстоянии от него ударила молния? Скорость звука в воздухе 330 м/с.

5. Итоги урока

Рефлексия:

  1. В каких средах может распространяться звук?

  2. Какую волну представляет собой звук?

  3. Как определить скорость звука?

  4. В результате чего образуется эхо?

  5. Почему при использовании рупора звук распространяется на большее расстояние?

  6. Где применяется явление эха?

  7. Что называют резонансом?

  8. Какие проборы используются для регистрации звуковых волн?

6. Домашнее задание

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Конспект урока по физике "Распространение звука в различных средах. Эхо. Резонанс. Сейсмограф. Фонограф""

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Ландшафтный архитектор

Получите профессию

Фитнес-тренер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 662 383 материала в базе

Скачать материал

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 17.02.2016 6980
    • DOCX 1.2 мбайт
    • 58 скачиваний
    • Оцените материал:
  • Настоящий материал опубликован пользователем Калиниченко Сергей Владимирович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 9 лет и 1 месяц
    • Подписчики: 0
    • Всего просмотров: 90408
    • Всего материалов: 29

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Фитнес-тренер

Фитнес-тренер

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Педагогическая деятельность по проектированию и реализации образовательного процесса в общеобразовательных организациях (предмет "Физика")

Учитель физики

300 ч. — 1200 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 35 человек из 22 регионов
  • Этот курс уже прошли 39 человек

Курс повышения квалификации

Особенности подготовки к сдаче ЕГЭ по физике в условиях реализации ФГОС СОО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 49 человек из 25 регионов
  • Этот курс уже прошли 457 человек

Курс повышения квалификации

Актуальные вопросы преподавания физики в школе в условиях реализации ФГОС

72 ч.

2200 руб. 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 208 человек из 62 регионов
  • Этот курс уже прошли 1 003 человека

Мини-курс

Психоаналитический подход: изучение определенных аспектов психологии личности

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Маркетплейсы: организационные, правовые и экономические аспекты

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Дизайн интерьера: от спектра услуг до эффективного управления временем

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 20 человек из 14 регионов
Сейчас в эфире

"С понедельника — начну!.." Практическое руководство к модификации образа жизни

Перейти к трансляции