655101
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаКонспектыКонспект урока по математике на тему "Подобные слагаемые" (6 класс)

Конспект урока по математике на тему "Подобные слагаемые" (6 класс)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Класс: 6 Дата проведения урока:

Предмет: Математика Урок: 93


Тема урока: Подобные слагаемые

Цели:

-ввести понятие подобных слагаемых;

-объяснить, что значит «привести подобные слагаемые»;

-развивать логическое мышление, интерес к математике.

Информация для учителя

Тема эта для учащихся не новая. Еще в 5 классе они приводили подобные слагаемые, но не использовали терминологию и не обосновывали приема преобразования, которыми уже пользовались.

При выполнении преобразований выражений:

1. Выяснить, почему данные слагаемые будут подобными (не будут подобными).

2. Определить, каковы буквенные множители у этих слагаемых.

3. Определить коэффициенты.

4. Сформулировать правило приведения подобных слагаемых.

5. Привести подобные слагаемые.

Правило приведения подобных слагаемых: чтобы привести подобные слагаемые, нужно сложить их коэффициенты и результат умножить на буквенные множители.

Ход урока

I. Организационный момент

II. Устный счет

1. Раскройте скобки:

http://compendium.su/mathematics/mathematics6/mathematics6.files/image1474.jpg

2. Упростите выражение: —15 · a · 2 · d; 3 · n · m · (—4);

3. В 9 вагонах разместите 45 коров так, чтобы в каждом вагоне было разное их количество. (Используется интересный математический факт: сумма всех однозначных чисел равна 45.)

4. Исправьте ошибку, переставив одну спичку.

1) VI - IV = IX (V + IV = IX);

2) X + X — I (X — IX = I);

3) VII - III = IX (VII + II = IX);

4) III - II – IV (III + I = IV);

5) XV - VII = XXI (XV + VI = XXI).

5. Сколько граней у шестигранного карандаша? (Восемь, если карандаш не заточен. Часто отвечают «шесть».)

III. Сообщение темы урока

Прочитайте анаграмму: пбднеыоо сааымеелг. Правильно, подобные слагаемые. Сегодня на уроке мы выясним, что это такое, и научимся приводить подобные слагаемые.

IV. Изучение нового материала

1. Подготовительная работа.

Вспомните распределительное свойство умножения относительно сложения и вычитания. Запишите его в буквенном виде.

(а + b) · с = ас + bс; (а — b) · с = ас — bс.

2. Работа над новой темой.

1) Замену выражений (а + b) · с и (а — b) · с выражениями ас + bс и ас — bс или выражений с · (а + b) и с · (а — b) выражениями са + са и са — cb также называют раскрытием скобок.

Раскройте скобки в выражении:

а) —2 · (а + b — с);

б) 6 · (—а — b + d);

в) (—а —b —с) · (—4);

г) (2а + 3b — 4с) · 5.

На основании какого свойства умножения мы можем выполнить данное преобразование?

2) Упростите выражение 5а + 2а — 12а.

Посмотрите на слагаемые.

Что у них общего? (Одинаковые буквенные множители.)

Чем отличаются? (Коэффициентами.)

Упростим 5а + 2а — 12а = а · (5 + 2 — 12) = —5а.

Чем мы воспользовались при упрощении выражения? (Распределительным свойством умножения.)

Что записали в скобках? (Сумму коэффициентов всех слагаемых.)

В выражении 5а + 2а —12 а все слагаемые имеют одинаковую буквенную часть и отличаются друг от друга только коэффициентами. Такие слагаемые называются подобными.

Подобный — похожий на что, схожий с чем, близкий, подходящий, одного вида, образа, свойств или качеств (из толкового словаря В. И. Даля).

Дайте определение подобных слагаемых.

Определение. Слагаемые, имеющие одинаковую буквенную часть, называются подобными слагаемыми.

Чем могут отличаться подобные слагаемые? (Только коэффициентами.)

Приведите примеры подобных слагаемых.

Как вы думаете, что значит привести подобные слагаемые?

Чтобы сложить (или привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.

С учебника, прочитай текст под рубрикой «Говори правильно».

Выполните приведение подобных слагаемых:

а) —3а + 6а — 9а;

б) 7ab — 3ab + 2аb;

в) —8с + 3с + 8с;

г) —k + 4k — 7k.

Прочитайте разными способами выражения.

Решение:

а) В данной сумме все слагаемые подобны, так как у них одинаковая буквенная часть а.

Коэффициенты равны: —3, 6 и —9.

Сложим коэффициенты: —3 + 6 — 9 = —6.

Получаем: —3а + 6а — 9а = —6.

V. Закрепление изученного материала

1. На доске и в тетрадях.

Являются ли данные слагаемые подобными? Почему?

(Ответ:

а) 8а — 8b + 8с; б) —5m + 5n + 5k; в) abam + аn; г) —6аb + 3ас — 4а.)

2 (у доски работают 3 ученика, остальные — в тетрадях, самопроверка).

Назовите общие слагаемые.

Подчеркните их.

Вынесите за скобки.

Найдите значение выражения.

Решение:

http://compendium.su/mathematics/mathematics6/mathematics6.files/image1475.jpg

Вспомните, как можно устно умножать двузначные числа на 11:

1) раздвигаем цифры 2 и 4;

2) между ними ставим их сумму.

2 (2 + 4) 4, получаем число 264.

Если сумма двух цифр равна 10 или больше, то цифру, стоящую в разряде сотен, увеличиваем на 1.

Например: 79 · 11 = 7(7 + 9)9 = 869, это 7(7 + 9)9 выполняется устно.

3. № 1283 (а—д) стр. 225 (с подробным комментированием у доски).

(Обратить внимание учащихся, что удобнее сначала сложить отдельно положительные и отрицательные коэффициенты, потом найти их сумму.)

Для г): что интересного заметили? (Здесь две пары слагаемых, у которых коэффициенты отличаются только знаками.)

На основании какого свойства сложения можно упростить данное выражение? (Сумма противоположных чисел равна нулю.)

Еще говорят, что данные подобные слагаемые взаимно уничтожаются. Поэтому их можно зачеркнуть.

(Ответ: а) —5х; б) —9а; в) 26р; г) 0; д) —0,3а.)

VI. Самостоятельная работа

(Взаимопроверка. Можно попросить помощи учителя или консультанта.)

Вариант I

1. Вычислить: —5,37 + 9,29 + 4,37.

2. Упростить выражение:

a) 8b + 12b - 21b + b;

б) 10а - а - b + 7b;

в) х + у – х - у + 4;

г) -15с - 15а + 8а + 4с.

Вариант II

1. Вычислить: —6,38 + 4,83 + 3,38.

2. Упростить выражение:

а) 7m + 16m — 24m + m;

б) 25nnm + 12m;

в) а + bb — а — 7;

г) —21х - 23у + 17х + 26у.

VII. Физкультминутка

VIII. Работа над задачей (самостоятельно, устная проверка):

Что такое масштаб?

Прочитайте задачу.

Составьте краткую запись.

Решите самостоятельно.

Пусть х — во сколько раз уменьшили расстояние на местности, чтобы его изобразить на карте.


Расстояние

Масштаб

На карте

На местности

http://compendium.su/mathematics/mathematics6/mathematics6.files/image1476.jpg

http://compendium.su/mathematics/mathematics6/mathematics6.files/image1477.jpg

8,8 : 44 000 000 = 1 : х

х = 1 · 44 000 000 : 8,8

х = 50 000 000; 50 000 000 — длина отрезка на карте. (Ответ: масштаб 1 : 50 000 000.)

IX. Повторение изученного материала

X. Подведение итогов урока

Какие слагаемые называют подобными?

Чем могут отличаться друг от друга подобные слагаемые?

Домашнее задание

Учебник (прочитать текст под рубрикой «Говори правильно».

Само задание можно не переписывать, записать в тетрадь только ответы.



Общая информация

Номер материала: ДВ-124359

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.