1138885
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыКонспект урока "Расстояние от точки до плоскости 10 класс"

Конспект урока "Расстояние от точки до плоскости 10 класс"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Конспект урока.

Геометрия 10 класс



Тема урока: «Расстояние от точки до плоскости»

Для изучения темы отведено часов


Тема: расстояние от точки до плоскости.

Тип урока: урок изложения нового материала.


Цели урока.

Дидактические:

обобщить и систематизировать знания учащихся по теме;

продолжить формирование умений и навыков по решению задач;

стимулировать учащихся к овладению решением задач;

проконтролировать степень усвоения знаний, умений и навыков по теме.

Развивающие:

совершенствовать, развивать умения и навыки по решению задач на нахождение расстояния от точки до плоскости;

развивать логическое мышление, учить анализировать и обобщать;

продолжить работу по развитию математической речи и памяти.

Воспитательные:

продолжить формирование навыков эстетического оформления записей в тетради и выполнения чертежей;

приучать к умению общаться и выслушивать других;

воспитание сознательной дисциплины;

развитие творческой самостоятельности и инициативы.

Задачи урока:

  • Обеспечить усвоение новых понятий, изображать и определять на рисунке перпендикуляр, наклонную, проекцию наклонной, расстояние от точки до плоскости

  • применить знания при решении задач базового уровня

  • развивать пространственное воображение;

  • развивать навыки как самостоятельной деятельности, так и работы в паре, выслушивать объяснения и самому объяснять, проводить самоанализ своей работы

Планируемые образовательные результаты:

предметные

  • знать определения понятий: перпендикуляр, наклонная, проекция;

  • знать план решения задачи

личностные

  • развитие познавательных интересов, учебных мотивов;

  • проявление дисциплинированности, трудолюбия и упорства в решении поставленных целей;

метапредметные

  • умение ставить перед собой цель и планировать деятельность в соответствии с поставленной целью;

  • сличение способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона;

  • умение вступать в сотрудничество с учителем и сверстниками, работать в группе;

  • формирование научного мировоззрения



Оборудование урока:

  • презентация к уроку;

  • карточки с задачами;

  • лист самооценки для каждого ученика

Литература:

«Геометрия. 10-11 класс», Л. С. Атанасян и др., М.: Просвещение, 2006 г. 256 с.;

«Изучение геометрии в 10-11 классах. Книга для учителя», С. М. Саакян, В. Ф. Бутузов, 2010 г., 248 с.

Ход урока


  1. Организационный момент: разъяснение учащимся темы, цели и организацию работы в парах , рассказывает о заполнении листа самооценки

  2. Изложение нового материала:

Объяснение ведется с помощью презентации, в результате на экране и в тетрадях учащихся появляются записи: (см. слайд 2,3)

  1. Решение задач, работая в парах:

Задача 1

-решить задачу самостоятельно и оформить решение в тетради

- обсудить решение в паре, заполнить лист самооценки

Задача: Доказать, что проекции равных наклонных, проведенных из одной точки равны.

Обсудить вместе с классом алгоритм решения следующей задачи: (см. слайд 5, 6, 7)

Найти расстояние от точки Р до плоскости треугольника, если точка Р равноудалена от его вершин. (см. слайд 5)

Вопросы к классу:

-Где находится точка О ?

-Каким свойством она обладает ? (она равноудалена от вершин треугольника, т.е. является центром описанной около треугольника окружности)

-От чего зависит местонахождение центра описанной окружности (от типа треугольника)

-Что нужно знать, чтобы найти искомое расстояние РА и РО, где РО- радиус описанной окружности)

Составим план решения задачи:

  1. Определить тип треугольника и местонахождение точки о

  2. Сделать рисунок к задаче

  3. Найти радиус описанной окружности:







прямоугольный

равносторонний

остроугольный

тупоугольный

О - середина гипотенузы


О - точка пересечения медиан, высот, биссектрис

О - точка пересечения серединных перпендикуляров

О - точка пересечения серединных перпендикуляров

R=c/2

R=

R=

S=

P=(a+b+c)/2

R=

S=

P=(a+b+c)/2


  1. Найти расстояние по теореме Пифагора : РО=


  1. Тест. Работа в паре: решить тест, поменяться тетрадями, проверить правильность

Тест по теме «Расстояние от точки до плоскости».


1.Отрезок АН называется__перпендикуляром___________________,

проведенным из точки А к плоскости , если прямая АН и пересекает ее в точке Н. Точка Н – основание перпендикуляра______________________

2.Отрезок АМ называется __наклонной___________________________,

проведенной из точки А к плоскости , если прямая АМ не перпендикулярна плоскости и пересекает ее в точке М. Точка М – ___основание наклонной_

3. Перпендикуляр, проведенный из данной точки к плоскости, __меньше__________любой наклонной, проведенной из той же точки к этой плоскости.

4. Длина перпендикуляра, проведенного из точки А к плоскости называется _расстоянием от точки А к плоскости_________________

5. Через точку М проведены прямые c и d , пересекающие плоскость в точках С и Д, причем прямая с . Тогда МС – _перпендикуляр______, МД – _____наклонная__________, СД – __проекция наклонной____________

6. Расстояние от точки А до плоскости равно 3 см. Длина перпендикуляра, проведенного из точки А к плоскости равно _____3 см________.


7. Установите соответствие по рисунку.


hello_html_7ac0f0ce.png


1. АС А. Проекция наклонной.

2. СВ В. Перпендикуляр.

3. АВ С. Наклонная.

Ответ: 1 __С__ 2 __В___ 3 ___А___

8. Из точки А к плоскости проведены наклонная АВ длиной 5 см. Найдите ее проекцию, если расстояние от точки до плоскости 3 см.

Ответ: _4 см.____

9. Расстояние между параллельными плоскостями – это расстояние _____расстояние от точки одной плоскости до другой_____________

10. Расстоянием между скрещивающимися прямыми называют __длину их общего перпендикуляра___________________________

11. Прямая NM параллельна плоскости . Расстоянием от точки N до плоскости равно 6 см. Расстояние от точки М до плоскости равно _ 6 см__

12. Точка В лежит в плоскости , а точка А находится от плоскости на расстоянии 8 см. Найдите расстояние от середины отрезка АВ до плоскости .

Ответ: 4 см.



Внести данные в лист самооценки.

Задача 3.Вернуться к своей паре и совместно решить следующие задачи:

1пара: Точка К находится на расстоянии 7 см от вершин треугольника со сторонами 5 см, 5 см и 6 см. Найдите расстояние от точки К до плоскости треугольника.

2 пара: Точка К находится на расстоянии 8 см от вершин треугольника со сторонами 5 см, 5 см и 8 см. Найти расстояние от точки К до плоскости треугольника.


Поменяться парами, объяснить решение своей задачи, разобрать другую задачу, проверить правильность решения, заполнить лист самооценки

  1. Итог урока

Тетради сдать на проверку учителю.

  1. Рефлексия

  2. Домашнее задание

§2. П.19 № 114, № 140.

Д.п. Из точки S проведены на плоскость перпендикуляр SO и наклонные SAи SB. Длины наклонных соответственно равны 13 см и 20 см. Длина проекции наклонной AS равна 5 см. Найдите расстояние от точки S до плоскости и длину проекции наклонной SB.




Лист самооценки знаний ученика 10 класса______________________________





задачи

Не приступил к решению

(0 баллов)

Не успел решить

(1 балл)

Решил с ошибкой

(2 балла)

Решил полностью

(3балла)

Объяснил

решение

(3 балла)

1






2






3






Посчитай количество набранных баллов:

16-18 баллов - «Молодец, очень хорошо!»

12-15 баллов – «Не плохо!»

9-11 баллов – « Можно и получше ! »

менее 9 баллов – «Сегодня не твой день!»




Общая информация

Номер материала: ДБ-247369

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.