Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Конспект урока "Решение иррациональных уравнений"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Конспект урока "Решение иррациональных уравнений"

библиотека
материалов

Урок алгебра 11 класс Михальчук Н.Л. учитель математики НИСЦ РО «Восток» для одаренных детей

Тема: Решение иррациональных уравнений

Цель: обеспечение качества усвоения учащимися образовательного стандарта по теме «Решение иррациональных уравнений».

Задачи:

  1. рассмотреть понятие «иррациональное уравнение»;

  2. рассмотреть основные и дополнительные методы решения иррациональных
    уравнений;

  3. способствовать сознательному усвоению учащимися способов решения
    иррациональных уравнений.

Организационный момент (2 мин) Приветствие

Дорогие ребята!

Вашему вниманию предлагаем урок-лекцию по теме «Решение иррациональных уравнений», предназначенную для изучения учащимися 9-10 классов и для обобщения, дополнительного осмысления и обогащения знаний учащимися 11 классов. Решение иррациональных уравнений, по мнению учащихся и педагогов обычно вызывает затруднения. Обращение к данной теме при подготовке к ЕНТ, поступлению ВУЗы является актуальным и целесообразным. Во время занятия мы рассмотрим не только основные методы решения иррациональных уравнений, но и дополнительные. Прежде, чем рассмотреть способы и приемы решения данных уравнений, обратимся к определению иррационального уравнения.

Определение: Иррациональным уравнением называется уравнение, содержащее неизвестную под знаком радикала, а также под знаком возведения в дробную степень.

hello_html_4602530c.jpg

Основная цель при решении иррациональных уравнений состоит в том, чтобы освободиться от знака радикала и получить рациональное уравнение.

При решении иррациональных уравнений применяют следующие основные методы: • возведение в степень обеих частей уравнения;

  • введение новой переменной;

  • разложение на множители.

Кроме основных методов следует рассмотреть дополнительные методы решения иррациональных уравнений:

  • умножение на сопряженное;

  • переход к уравнению с модулем;

  • метод «пристального взгляда» (метод анализа уравнения);

  • использование монотонности функции.

Прежде чем приступить к решению иррационального уравнения, используя вышеперечисленные методы, необходимо обратить внимание на вид данного уравнения. Это позволяет определить, есть ли смысл решать уравнение вообще, и если да, то каким способом его можно решить.

hello_html_247bafc5.jpg

т.к. значение

К примеру, нет смысла приступать к решению уравнения

арифметического корня не может быть отрицательным числом.

Рассмотрим каждый из основных методов.

/. Метод возведения в степень обеих частей уравнения:

а) если иррациональное уравнение содержит только один радикал, то нужно
записать так, чтобы в одной части знака равенства оказался только этот радикал.
Затем обе части уравнения возводят в одну и ту же степень, чтобы получилось
рациональное уравнение;

б) если в иррациональном уравнении содержится два или более радикала, то
сначала изолируется один из радикалов, затем обе части уравнения возводят в
одну и ту же степень, и повторяют операцию возведения в степень до тех пор,
пока не получится рациональное уравнение.

3) При возведении обеих частей уравнения в одну и ту же степень получается уравнение, не равносильное данному. Поэтому необходимо проверить, удовлетворяют или не удовлетворяют найденные значения переменной данному уравнению. Проверка является составной частью решения иррациональных уравнений, целью которой является исключение посторонних корней уравнения.

hello_html_3b5c8ee6.jpg

hello_html_b90d4ef.jpg





Ответ: х = 3.

В данном случае проверка оказалась довольно простой. Но могут встретиться уравнения, корни которых иррациональны, и проверка приводит к очень сложным вычислениям. В таких случаях лучше решать простейшие иррациональные уравнения с помощью равносильных преобразований по следующей схеме:

hello_html_7bcd8ed1.jpg








hello_html_m58da7157.jpg

Неравенство

«отсекает» посторонние решения и позволяет обходиться

без проверки.


hello_html_m7a41a3bc.jpg

В данном случае можно проверять любое из неравенств. На практике, как правило, выбирают то, которое проще в решении.

hello_html_5b905035.jpg

Ответ: 2.

Вывод: Если корни, полученные в результате возведения в квадрат, достаточно простые, то можно не беспокоиться о равносильности переходов, а просто проверить их непосредственной подстановкой в исходное уравнение. В случаях, когда проверка затруднительна, нужно аккуратно следить за тем, чтобы преобразования были равносильными и не появлялись посторонние корни.

Рассмотрим уравнения, содержащие два радикала. Пример №5 Решите уравнение

hello_html_m39465291.jpg

hello_html_md09bce6.jpg





hello_html_779ebb78.jpg

2. Метод введения новой переменной

Данный метод, как правило, применяется в том случае, когда в уравнении неоднократно встречается некоторое выражение, зависящее от неизвестной величины. Тогда имеет смысл принять это выражение за новую переменную и решить уравнение сначала относительно введенной неизвестной, а потом найти исходящую величину.

Пример №9 Решите уравнение

hello_html_m78d37ab0.jpg

hello_html_6200a351.jpg

3. Метод разложения на множители

Для решения иррациональных уравнений данным методом следует пользоваться правилом:

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей, входящих в это произведение, равен нулю, а остальные при этом имеют смысл.

hello_html_m3a256e54.jpg

hello_html_70d344c3.jpg

Обратимся к дополнительным методам решения иррациональных уравнений и рассмотрим подробно три из них: метод «пристального взгляда» (или метод анализа уравнения), метод использования монотонности функции, переход к уравнению с модулем.

Метод анализа уравнения

Среди иррациональных уравнений встречаются такие, которые не решаются с помощью приведённых выше приемов. В подобных случаях иногда может оказаться

полезным анализ области определения функций, входящих в уравнение, а также использование свойств корней степени п.

Отметим следующие свойства корней, которыми мы постоянно будем пользоваться при решении уравнений данным методом:

  1. Все корни четной степени являются арифметическими, т.е. если подкоренное
    выражение отрицательно, то корень лишен смысла; если подкоренное выражение
    равно нулю, то корень также равен нулю; если подкоренное выражение
    положительно, то значение корня положительно.

  2. Все корни нечетной степени определены при любом значении подкоренного
    выражения.

hello_html_m1c32f6a7.jpg

3. Функции

являются возрастающими на своей области

определения.

В ряде случаев можно установить, что уравнение не имеет решения, не прибегая к

преобразованиям.

hello_html_m33d02587.jpg

Арифметический корень не может быть отрицательным числом, поэтому уравнение решений не имеет.

hello_html_4fd7e47.jpg

Уравнение не имеет решений.

Использование монотонности функций

Использование монотонности функций, входящих в уравнение, нередко значительно упрощает техническую часть решения.

Сформулируем два свойства монотонных функций и теорему о корне.

  1. Сумма возрастающих (убывающих) функций - функция возрастающая
    (соответственно, убывающая) на их общей области определения.

  2. Разность возрастающей и убывающей (соответственно, убывающей и
    возрастающей) функций - функция возрастающая (убывающая) на общей области
    определения.

  3. Теорема о корне.

Пусть y=f(x) - монотонная на некотором промежутке функция. Тогда при

любом значении а уравнение f(x) = а имеет на этом промежутке не более одного

корня.

Наглядный смысл теоремы о корне: горизонтальная прямая у = а может

пересечь график монотонной функции y = f(x) не более чем в одной точке (т.е.

либо вообще его не пересекает, либо пересекает в единственной точке). Рассмотрим примеры.

hello_html_m62623809.jpg

Пример №19 Решите уравнение:

Решение: Данное уравнение можно решать стандартным способом, т.е. почленно возвести промежуточные иррациональные уравнения в квадрат, найти корни полученного квадратного уравнения с большими коэффициентами и произвести после этого проверку, для того чтобы убрать посторонние решения.

Но задача допускает решение «в одну строчку». Левая часть уравнения -возрастающая в своей области определения функция (первый радикал при увеличении х , очевидно, возрастает, а второй - убывает, но он вычитается из первого, поэтому их разность возрастает). Следовательно, уравнение имеет не более одного решения. Его легко найти: это х = 1.

hello_html_26f2ebcb.jpg


Ответ: {1}

Пример №20 Решите уравнение:

Решение: Левая часть уравнения - возрастающая функция. Поэтому существует не более одного решения данного уравнения. Корень х 10 легко найти подбором.

hello_html_m7d2f0beb.jpg

Ответ: {10}

Пример №21 Решите уравнение:

Решение: Левая часть данного уравнения - возрастающая функция. Поэтому найденный подбором корень х 7 является единственным.

Ответ: {7}

Метод перехода к уравнению с модулем Пример №22 Найти наибольший корень уравнения

hello_html_306333e.jpg

hello_html_m825eb04.jpg





hello_html_49829cc5.jpg

Пример №24

При каких значениях к уравнение имеет два корня?

hello_html_m52ecd1c5.jpg

Автор
Дата добавления 11.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров262
Номер материала ДВ-326637
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх