Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Информатика / Конспекты / Конспект урока+презентация по информатике на тему "Основы логики. Алгебра высказываний" (10 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Информатика

Конспект урока+презентация по информатике на тему "Основы логики. Алгебра высказываний" (10 класс)

Выбранный для просмотра документ Презентация к уроку по информатике в 10 классе Основы логики. Алгебра высказываний.pptx

библиотека
материалов
Информатика ФИО: Воронова Екатерина Николаевна Место работы: МАОУ "Лицей №1"г...
Упражнение 1. Какие из следующих предложений являются высказываниями? Определ...
Упражнение 2. Какие из приведенных высказываний являются общими, частными ил...
Основы логики. Алгебра высказываний.
Простые высказывания в алгебре логики обозначаются заглавными латинскими букв...
Логическое умножение (конъюнкция) Объединение двух (или нескольких) высказыв...
Тогда соответствующая логическая формула имеет вид: A ˄ B. Очевидно, ее значе...
Логическое сложение (дизъюнкция) Объединение двух (или нескольких) высказыван...
Тогда соответствующая логическая формула имеет вид: A ˅ B. Пример 2: Рассмотр...
Логическое отрицание (инверсия) Присоединение частицы «не» к высказыванию наз...
Тогда логическая форма отрицания этого высказывания имеет вид ¬A. Пример 3: Р...
Последовательность выполнения операций в логических формулах определяется ст...
Задание 2. Постройте отрицания следующих высказываний: Сегодня в театре идет...
Задание 1. Из двух простых высказываний постройте сложное высказывание, испол...
Ответы. Сегодня в театре не идет опера «Евгений Онегин». Не каждый охотник же...
15 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 Информатика ФИО: Воронова Екатерина Николаевна Место работы: МАОУ "Лицей №1"г
Описание слайда:

Информатика ФИО: Воронова Екатерина Николаевна Место работы: МАОУ "Лицей №1"г. Стерлитамак Должность: учитель информатики

№ слайда 2 Упражнение 1. Какие из следующих предложений являются высказываниями? Определ
Описание слайда:

Упражнение 1. Какие из следующих предложений являются высказываниями? Определите их истинность. Наполеон был французским императором. Чему равно расстояние от Земли до Марса? Число 6 – четное. Прямоугольник есть геометрическая фигура. Коля спросил «Который час?». Некоторые кошки не любят рыбу. Все ребята умеют плавать. Некоторые рыбы – хищники. Как пройти в библиотеку. Каждый человек - художник. ИСТИНА ЛОЖЬ ИСТИНА ИСТИНА ИСТИНА ИСТИНА ЛОЖЬ

№ слайда 3 Упражнение 2. Какие из приведенных высказываний являются общими, частными ил
Описание слайда:

Упражнение 2. Какие из приведенных высказываний являются общими, частными или единичными. Кошка является домашним животным. Ни один внимательный человек не совершит оплошность. Некоторые мои друзья собирают марки. Все лекарства приятны на вкус. Некоторые лекарства приятны на вкус. А - первая буква в алфавите. Некоторые медведи - бурые. Тигр – хищное животное. Все металлы проводят тепло. У некоторых змей нет ядовитых зубов. ЧАСТНОЕ ЧАСТНОЕ ОБЩЕЕ ОБЩЕЕ ОБЩЕЕ ЕДИНИЧНОЕ ЕДИНИЧНОЕ ЧАСТНОЕ ЕДИНИЧНОЕ ЧАСТНОЕ

№ слайда 4 Основы логики. Алгебра высказываний.
Описание слайда:

Основы логики. Алгебра высказываний.

№ слайда 5 Простые высказывания в алгебре логики обозначаются заглавными латинскими букв
Описание слайда:

Простые высказывания в алгебре логики обозначаются заглавными латинскими буквами. Рассмотрим два простых высказывания: «Два умножить на два равно четырем» «Два умножить на два равно пяти» A = B = Высказывания могут быть истинными или ложными. 1 = Истина 0 = Ложь В нашем случае первое высказывание истинно, а второе ложно. Таким образом, А = 1, В = 0

№ слайда 6 Логическое умножение (конъюнкция) Объединение двух (или нескольких) высказыв
Описание слайда:

Логическое умножение (конъюнкция) Объединение двух (или нескольких) высказываний в одно с помощью союза «и» называется операцией логического умножения или конъюнкцией. Конъюнкцией двух высказываний A и B называется новое высказывание истинное тогда и только тогда, когда оба высказывания A и B истинны. Обозначение: A ˄ B Таблица истинности: A B A˄B 0 0 0 0 1 0 1 0 0 1 1 1

№ слайда 7 Тогда соответствующая логическая формула имеет вид: A ˄ B. Очевидно, ее значе
Описание слайда:

Тогда соответствующая логическая формула имеет вид: A ˄ B. Очевидно, ее значение ИСТИНА. Пример 1: Рассмотрим сложное высказывание: «Число 6 делится на 2, и число 6 делится на 3». Представить данное высказывание в виде логической формулы. Решение: Обозначим через А простое высказывание A = «Число 6 делится на 2», а через В простое высказывание В = «Число 6 делится на 3»

№ слайда 8 Логическое сложение (дизъюнкция) Объединение двух (или нескольких) высказыван
Описание слайда:

Логическое сложение (дизъюнкция) Объединение двух (или нескольких) высказываний с помощью союза «или» называется операцией логического сложения или дизъюнкцией. Дизъюнкцией двух высказываний A и B называется новое высказывание истинное тогда и только тогда, когда хотя бы одно из высказываний A и B истинно. Обозначение: A ˅ B Таблица истинности: A B A˅B 0 0 0 0 1 1 1 0 1 1 1 1

№ слайда 9 Тогда соответствующая логическая формула имеет вид: A ˅ B. Пример 2: Рассмотр
Описание слайда:

Тогда соответствующая логическая формула имеет вид: A ˅ B. Пример 2: Рассмотрим сложное высказывание: «Летом я поеду в деревню, или в туристическую поездку». Представить данное высказывание в виде логической формулы. Решение: Обозначим через А простое высказывание A = «Летом я поеду в деревню», а через В простое высказывание В = «В туристическую поездку»

№ слайда 10 Логическое отрицание (инверсия) Присоединение частицы «не» к высказыванию наз
Описание слайда:

Логическое отрицание (инверсия) Присоединение частицы «не» к высказыванию называется операцией логического отрицания или инверсией. Логическое отрицание делает истинное высказывание ложным и, наоборот, ложное – истинным. Обозначение: ¬ A Таблица истинности: A ¬A 0 1 1 0

№ слайда 11 Тогда логическая форма отрицания этого высказывания имеет вид ¬A. Пример 3: Р
Описание слайда:

Тогда логическая форма отрицания этого высказывания имеет вид ¬A. Пример 3: Рассмотрим высказывание: «Неверно, что 4 делится на 3». Решение: Обозначим через А простое высказывание A = «4 делится на 3»

№ слайда 12 Последовательность выполнения операций в логических формулах определяется ст
Описание слайда:

Последовательность выполнения операций в логических формулах определяется старшинством операций. В порядке убывания старшинства, логические операции расположены так: отрицание, конъюнкция, дизъюнкция. Кроме того, на порядок операции влияют скобки, которые можно использовать в логических формулах.  

№ слайда 13 Задание 2. Постройте отрицания следующих высказываний: Сегодня в театре идет
Описание слайда:

Задание 2. Постройте отрицания следующих высказываний: Сегодня в театре идет опера "Евгений Онегин". Каждый охотник желает знать, где сидит фазан. Число 1 есть простое число. Число 1 — составное. Натуральные числа, оканчивающиеся цифрой О, являются простыми числами. Неверно, что число 3 не является делителем чис­ла 198. Коля решил все задания контрольной работы. Неверно, что любое число, оканчивающееся цифрой 4, делится на 4. Во всякой школе некоторые ученики интересуются спортом. Некоторые млекопитающие не живут на суше.

№ слайда 14 Задание 1. Из двух простых высказываний постройте сложное высказывание, испол
Описание слайда:

Задание 1. Из двух простых высказываний постройте сложное высказывание, используя логические связки «И», «ИЛИ»: Марина старше Светы. Оля старше Светы. Одна половина класса изучает английский язык. Вторая половина класса изучает немецкий язык. В кабинете есть учебники. В кабинете есть справочники. Слова в этом предложении начинаются на букву Ч. Слова в этом предложении начинаются на букву А. Часть туристов любит чай. Остальные туристы любят молоко. Синий кубик меньше красного. Синий кубик меньше зеленого. Например: Все ученики изучают математику. Все ученики изучают литературу. Все ученики изучают математику и литературу

№ слайда 15 Ответы. Сегодня в театре не идет опера «Евгений Онегин». Не каждый охотник же
Описание слайда:

Ответы. Сегодня в театре не идет опера «Евгений Онегин». Не каждый охотник желает знать, где сидит фазан (некоторые охотники не желают знать, где сидит фазан). Число 1 не является простым числом. Число 1 — не составное. Натуральные числа, оканчивающиеся цифрой 0, не являются простыми числами. Число 3 не является делителем числа 198. Неверно, что Коля решил все задания контрольной работы (Коля не решил некоторые задания контрольной работы). Любое число, оканчивающееся цифрой 4, делится на 4. В некоторых школах все ученики не интересуются спортом. Все млекопитающие живут на суше.

Выбранный для просмотра документ Урок по информатике в 10 классе Основы логики. Алгебра высказываний .docx

библиотека
материалов

hello_html_m8944ef0.gifФИО: Воронова Екатерина Николаевна

Место работы: МАОУ "Лицей №1"г. Стерлитамак

Должность: учитель информатики



Тема: Основы логики. Алгебра высказываний

Класс: 10В

Цели:

Образовательная:

  • ввести понятие основных логических операций;

  • вырабатывать умение формализовать сложные высказывания, т. е. записывать их с помощью математического аппарата алгебры логики, знакомство с разделом математики алгебра логики;

  • формировать практические умения решать логические задачи;

Развивающая: развивать познавательные интересы, логическое мышление; Воспитательная: воспитание активности учащихся.

Методы обучения: - объяснительно - иллюстративный;

Тип урока: объяснение нового материала

План урока:

1. Организационная часть – 2 – 3 мин.

2. Проверка и актуализация знаний - 7 мин.

3. Объяснение нового материала – 15 мин.

4. Практическая работа – 15 мин.

5. Домашнее задание – 2 мин.

6. Подведение итогов урока, выставление оценок – 2 – 3 мин.

Оборудование: - компьютерная презентация;

- проектор


Ход работы:


  1. Организационный момент (2 – 3 мин)

Здравствуйте, ребята! Присаживайтесь.



  1. Проверка и актуализация знаний (7 мин)

Перед тем как приступить к изучению новой темы, повторим основные понятия, изученные на прошлом уроке. Давайте вспомним все, что мы знаем о формах мышления.

  1. Какие существуют основные формы мышления?

Ответ: понятие, высказывание, умозаключение.

  1. Может ли быть высказывание выражено в форме вопросительного предложения?

Задание 1: Какие из следующих предложений являются высказываниями? Определите их истинность.

  1. Наполеон был французским императором. (Истина)

  2. Чему равно расстояние от Земли до Марса? (предложение не является повествовательным, следовательно, он не является высказываниям)

  3. Число 6 – четное. (Истина)

  4. Прямоугольник есть геометрическая фигура. (Истина)

  5. Коля спросил «Который час?».

  6. Некоторые кошки не любят рыбу. (Истина)

  7. Все ребята умеют плавать. (Ложь)

  8. Некоторые рыбы – хищники. (Истина)

  9. Как пройти в библиотеку?

  10. Каждый человек – художник. (Ложь)

Задание 2: Какие из приведенных высказываний являются общими, частными или единичными.

  1. Кошка является домашним животным. (Единичное)

  2. Ни один внимательный человек не совершит оплошность. (Общее)

  3. Некоторые мои друзья собирают марки. (Частное)

  4. Все лекарства приятны на вкус. (Общее)

  5. Некоторые лекарства приятны на вкус. (Частное)

  6. А – первая буква в алфавите. (Единичное)

  7. Некоторые медведи – бурые. (Частное)

  8. Тигр – хищное животное. (Единичное)

  9. Все металлы проводят тепло. (Общее)

  10. У некоторых змей нет ядовитых зубов. (Частное)


  1. Объяснение нового материала (15 мин)

Итак, тема нашего сегодняшнего урока «Алгебра высказываний». Открываем тетради, записываем число и тему урока.

Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их сущность.

Простые высказывания в алгебре логики обозначаются заглавными латинскими буквами. Рассмотрим два простых высказывания:

A = «Два умножить на два равно четырем»

B = «Два умножить на два равно пяти»

Высказывания, как уже говорилось ранее, могут быть истинными или ложными. Истинному высказыванию соответствует значение логической переменной 1, а ложному — значение 0. В нашем случае первое высказывание истинно, а второе ложно. Таким образом, А = 1, В = 0.

В алгебре высказываний над высказываниями можно производить определенные логические операции, в результате которых получаются новые, составные высказывания.

Для образования новых высказываний наиболее часто используются базовые логические операции, выражаемые с помощью логических связок «и», «или», «не».


Логическое умножение (конъюнкция)

Объединение двух (или нескольких) высказываний в одно с помощью союза «и» называется операцией логического умножения или конъюнкцией.

Конъюнкция в русском языке она выражается союзом И. В математической логике используются знаки & или ˄. Конъюнкция – двухместная операция; записывается в виде A ˄ B.

Конъюнкцией двух высказываний A и B называется новое высказывание истинное тогда и только тогда, когда оба высказывания A и B истинны.

Таблица истинности:

A

B

A ˄ B

0

0

0

0

1

0

1

0

0

1

1

1


Пример 1: Рассмотрим сложное высказывание: «Число 6 делится на 2, и число 6 делится на 3». Представить данное высказывание в виде логической формулы.

Решение: Обозначим через А простое высказывание

A = «Число 6 делится на 2», а через В простое высказывание

В = «Число 6 делится на 3»

Тогда соответствующая логическая формула имеет вид: A ˄ B. Очевидно, ее значение ИСТИНА.


Логическое сложение (дизъюнкция)

Объединение двух (или нескольких) высказываний с помощью союза «или» называется операцией логического сложения или дизъюнкцией.

Дизъюнкция в русском языке этой связке соответствует союз ИЛИ. В математической логике она обозначается знаком ˅. Дизъюнкция – двухместная операция; записывается в виде A ˅ B.

Дизъюнкцией двух высказываний A и B называется новое высказывание истинное тогда и только тогда, когда хотя бы одно из высказываний A и B истинно.

Значение логической функции можно определить с помощью таблицы истинности данной функции, которая показывает, какие значения принимает логическая функция при всех возможных наборах ее аргументов.

Таблица истинности:

A

B

A ˅ B

0

0

0

0

1

1

1

0

1

1

1

1


Пример 2: Рассмотрим сложное высказывание: «Летом я поеду в деревню, или в туристическую поездку». Представить данное высказывание в виде логической формулы.

Решение: Обозначим через А простое высказывание

A = «Летом я поеду в деревню», а через В – простое высказывание

В = «В туристическую поездку»

Тогда соответствующая логическая формула имеет вид: A ˅ B.

Логическое отрицание (инверсия)

Присоединение частицы «не» к высказыванию называется операцией логического отрицания или инверсией.

В русском языке этой связке соответствует частица НЕ (в некоторых высказываниях применяется оборот «неверно, что…»). Отрицание – унарная (одноместная) операция; записывается в виде: ¬ A или hello_html_m2526460.gif.

Логическое отрицание делает истинное высказывание ложным и, наоборот, ложное – истинным.

Таблица истинности:

A

¬ A

0

1

1

0


Пример 3: Рассмотрим высказывание: «Неверно, что 4 делится на 3».

Решение: Обозначим через А простое высказывание

A = «4 делится на 3»

Тогда логическая форма отрицания этого высказывания имеет вид ¬A.

Последовательность выполнения операций в логических формулах определяется старшинством операций. В порядке убывания старшинства, логические операции расположены так: отрицание, конъюнкция, дизъюнкция. Кроме того, на порядок операции влияют скобки, которые можно использовать в логических формулах.


Пример 4: Найдите значения логических выражений:

((1 ˄ 0) ˅ (1 ˄ 0)) ˅ 1


  1. Практическая работа (15 мин)

Задание 1. Постройте отрицания следующих высказываний:

  1. Сегодня в театре идет опера "Евгений Онегин".

  2. Каждый охотник желает знать, где сидит фазан.

  3. Число 1 есть простое число.

  4. Число 1 — составное.

  5. Натуральные числа, оканчивающиеся цифрой 0, являются простыми числами.

  6. Неверно, что число 3 не является делителем числа 198.

  7. Коля решил все задания контрольной работы.

  8. Неверно, что любое число, оканчивающееся цифрой 4, делится на 4.

  9. Во всякой школе некоторые ученики интересуются спортом.

  10. Некоторые млекопитающие не живут на суше.

Ответы:

  1. Сегодня в театре не идет опера «Евгений Онегин».

  2. Не каждый охотник желает знать, где сидит фазан (некоторые охотники не желают знать, где сидит фазан).

  3. Число 1 не есть простое число (не является простым числом).

  4. Число 1 — не составное.

  5. Натуральные числа, оканчивающиеся цифрой 0, не являются простыми числами.

  6. Число 3 не является делителем числа 198.

  7. Неверно, что Коля решил все задания контрольной работы (Коля не решил некоторые задания контрольной работы).

  8. Любое число, оканчивающееся цифрой 4, делится на 4.

  9. В некоторых школах все ученики не интересуются спортом.

  10. Все млекопитающие живут на суше.


Задание 2. Из двух простых высказываний постройте сложное высказывание, используя логические связки «И», «ИЛИ»:

Например:



Все ученики изучают математику.


Все ученики изучают

Все ученики изучают литературу.


математику и литературу


  1. Марина старше Светы. Оля старше Светы. (И)

  2. Одна половина класса изучает английский язык. Вторая половина класса изучает немецкий язык. (И)

  3. В кабинете есть учебники. В кабинете есть справочники. (И)

  4. Слова в этом предложении начинаются на букву Ч. Слова в этом предложении начинаются на букву А. (ИЛИ)

  5. Часть туристов любит чай. Остальные туристы любят молоко. (И)

  6. Синий кубик меньше красного. Синий кубик меньше зеленого. (И)

Задание 3. Определите значение истинности следующих высказываний:

  1. Приставка есть часть слова, и она пишется раздельно со словом.

  2. Суффикс есть часть слова, и он стоит после корня.

  3. Родственные слова имеют общую часть, и они сходны по смыслу.

  4. Две прямые на плоскости параллельны или пересекаются.

  5. Луна – планета или 2 + 3 = 5.


Задание 4. Найдите значения логических выражений:

  1. (1˅1) ˅(1 ˅ 0)

  2. (0 ˅ 1) ˅ (1 ˅ 0)

  3. 1 ˄ (1 ˄ 1) ˄1

  1. Домашняя работа (2 мин)

Выучить основные определения.

Задание. Найдите значения логических выражений:

  1. ((1˅0) ˅1) ˅ 1

  2. (0 ˄ 1) ˄ 1

  3. ((1 ˅ 0) ˄ (1 ˄ 1)) ˄ (0 ˅ 1)


  1. Подведение итогов урока, выставление оценок (2 – 3мин)

  2. Использованная литература:

  1. Информатика и ИКТ. Задачник-практикум: в 2 т. / Л.А. Залогова [и др.]; под ред. И.Г. Семакина, Е.К. Хеннера. – 3 изд. – М.: БИНОМ. Лаборатория знаний, 2011.

  2. Семакин И.Г., Залогова Л.А, Русаков С.В., Шестакова Л.В. Информатика и ИКТ: учебник для 9 класса. – М.: БИНОМ. Лаборатория знаний, 2011.

  3. Семакин И.Г., Шеина Т.Ю. Преподавание базового курса информатики в средней школе: методическое пособие. М.: БИНОМ. Лаборатория знаний, 2007.

  4. Семакин И.Г., Вараксин Г.С. Структурированный конспект базового курса. – М.: Лаборатория Базовых Знаний, 2001.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 03.02.2016
Раздел Информатика
Подраздел Конспекты
Просмотров900
Номер материала ДВ-411467
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх