Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Конспект по математике на тему:"Производная"

Конспект по математике на тему:"Производная"

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


СВИДЕТЕЛЬСТВО СРАЗУ ПОСЛЕ ПРОСМОТРА ВЕБИНАРА

Вебинар «Подростковая лень: причины, способы борьбы»

Просмотр и заказ свидетельств доступен только до 22 января! На свидетельстве будет указано 2 академических часа и данные о наличии образовательной лицензии у организатора, что поможет Вам качественно пополнить собственное портфолио для аттестации.

Получить свидетельство за вебинар - https://infourok.ru/webinar/65.html

  • Математика

Поделитесь материалом с коллегами:

hello_html_3e39cba2.gif

Министерство образования Оренбургской области

государственное автономное образовательное учреждение

среднего профессионального образования

«Бугурусланский нефтяной колледж»

г. Бугуруслана Оренбургской области











ТЕХНОЛОГИЧЕСКАЯ КАРТА ОТКРЫТОГО УРОКА


Дисциплина: ОДП. 10 «Математика»

Группа: 112

Специальность: 43.01.02«Парикмахер»

Преподаватель: Шаляпина Олеся Руслановна

Дата: 13.03.2015 г.

П(Ц)К: общеобразовательных дисциплин

















Бугуруслан, 2015

Группа

Дата

Занятие №


22.10.2014 г.






Тема: Произоводная

Тип занятия: комбинированный

Цели:

  1. Образовательная:

  • повторить формулы на преобразование тригонометрических выражений;

  • изучить: понятие производной функции, правила вычисления производных;

  • понять таблицу производных и суметь ее применять при решении заданий.

  1. Развивающая:

  • развивать умение работать в группе;

  • развивать логическое мышление.

  1. Воспитывающая:

  • воспитывать чувство такта, математическую культуру;

  • интерес к углубленному изучению математики.

Результат занятия: после проведения занятия студенты должны:

  • знать: как математически определенные функции могут описывать реальные зависимости;

  • уметь: решать уравнения с помощью производной функции.

Оборудование: учебник, раздаточный материал, картинки для рефлексиию

Литература:

  1. Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень) / А.Г. Мордкович, И.М. Смирнова [и др.]. – 8-е изд., стер. – М. : Мнемозина, 2013. – 431 с. : ил.

  2. Поурочные разработки по математике. 10 класс. К УМК А.Г. Мордковича

  3. http://obrazovanie66.ru/main_prof.php?profid=342

  4. http://go.mail.ru/search_images

Организационная структура занятия

Этап занятия

Время

Деятельность преподавателя

Деятельность студента

Форма организации совзаимодействия на уроке

  1. Орг. момент. мотивацияч к учебной деятельности.

2 минуты

Создание положительного эмоционального настроя.

Приветствие преподавателя. гостей

Фронтальная

  1. Актуализация знаний. Выявление темы урока.

  1. 7 минут

  1. Проблемное задание

  2. Раздача заданий

  3. Историческая справка

Решение тестов

Индивидуальная



Фронтальная

  1. Целеполагание.

1 минута

Постановка целей занятия

Постановка целей для реализации.

Фронтальная

  1. Первичное усвоение новых знаний

15 минут

Помощь студентам в объяснении нового материала.

Работа в группах по заданиям. Объяснение новой темы студентами.

Групповая

Динамическая пауза

1 минута

Физминутка


Фронтальная

  1. Первичная проверка понимания

10 минут

Задает вопросы. Помощь в решении номеров.

Ответ на вопросы. Решение номеров № 27.1 (а, в), № 27.13 (а, в)

Фронтальная

  1. Контроль усвоения

4 минуты

Раздача материала.

Решение задания в группе. Собрание пазла.

Групповая

  1. Информация о домашнем задании, инструктаж по его выполнению.

2 минуты

27.1 (б, г), № 27.13 (б, г)

Запись д/з

Фронтальная

  1. Итог занятия

1 минута

Выставление отметок


Фронтальная

  1. Рефлексия

2 минуты

Рефлексия цветом.


Фронтальная



Преподаватель: __________ /О.Р. Шаляпина/

Тема: Произоводная

Тип занятия: комбинированный

Цели:

1. Образовательная:

повторить формулы на преобразование тригонометрических выражений;

изучить: понятие производной функции, правила вычисления производных;

понять таблицу производных и суметь ее применять при решении заданий.

2. Развивающая:

развивать умение работать в группе;

развивать логическое мышление.

3. Воспитывающая:

воспитывать чувство такта, математическую культуру;

интерес к углубленному изучению математики.

Результат занятия: после проведения занятия студенты должны:

знать: как математически определенные функции могут описывать реальные зависимости;

уметь: решать уравнения с помощью производной функции.

Оборудование: учебник, раздаточный материал, картинки для рефлексиию

Литература:

1. Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень) / А.Г. Мордкович, И.М. Смирнова [и др.]. – 8-е изд., стер. – М. : Мнемозина, 2013. – 431 с. : ил.

2. Поурочные разработки по математике. 10 класс. К УМК А.Г. Мордковича

3. http://obrazovanie66.ru/main_prof.php?profid=342

4. http://go.mail.ru/search_images


Ход занятия:


  1. Орг. момент. Мотивация к учебной деятельности.


П: Здравствуйте. Садитесь. Сегодня, на нашем уроке присутствуют гости, но мы не должны пугаться этого, а наоборот, показать не только все, что мы знаем, но и познать много нового. А еще, ваша будущая профессия не только одна из самых древних, но и одна из самых массовых. Но массовых не в том смысле, что вас много, а в том, что к вам ходит очень много людей различных профессий. Хороший мастер посредством своей работы должен не только подчеркнуть достоинства и скрыть недостатки лица посетителя с помощью хорошей прически, но и быть коммуникабельным, тактичным, деликатным и терпеливым. Как вы думаете, для чего я вам все это рассказываю?

С: Для того, чтобы мы поняли, что математика нужна нам для того, чтобы развивать свое логическое мышление, чтобы мы могли общаться со своими клиентами на математические темы, если таковые нам понадобятся

П: Для работы сегодня я разделила вас на группы. Как нужно работать в группах?

С: Работать дружно, не перебивать друг друга, помогать друг другу.

П: Заранее вы выбрали командиров для своих групп, которые будут оценивать вашу работу на уроке, но в этом вы должны им помогать. На каждом столе лежат бланки со списками и критериями оценивания. Если студент на данном этапе работал много, то ему ставится галочка, если просто помогал, подсказывал, то плюсик. по вашим галочкам и плюсикам будут выставлены отметки в конце занятия.


  1. Актуализация знаний. Выявление темы урока.


П: Посмотрите внимательно на слайд. Как решается данное упражнение?

hello_html_m7719bb05.gif

Что в нем необычного? Как может называться такое уравнение?

Для того, чтобы это узнать вы берете в руки тестовые задания, которые лежат у вас на столах и прорешиваете их. В конце теста есть табличка, куда вы записываете только букву правильного ответа. Отсюда вы и узнаете тему нашего урока.



Выберите номер правильного ответа.

Буквы, которые стоят перед правильным ответом, впишите в таблицу.

Получите тему сегодняшнего урока.


  1. Окрестностью какой точки является интервал (-22,4; -12,4)?

Б) -15, 4 В) 17, 4 А) 15,4 П) – 17, 4

  1. Чему равен предел стационарной последовательности?

Д) 0 Л) 1 Р) значению любого члена последовательности Г) любому числу

Вычислите предел числовой последовательности при n

3. xn = hello_html_m78edc031.gif

А) 0 О) -1 Е) 3 Г) 1

4. xn = hello_html_69d9fa07.gif

Ю) 3 И) 7 Т) 1 Ь) 0

5. xn = hello_html_m7395b2b5.gif

З) hello_html_m3eafd085.gif Д) hello_html_48ab342a.gif О) 0 Е) 1

6. hello_html_m7176f181.gif

Ф) -1 В) 0 д) 5 Э) 1

7. hello_html_7cccb680.gif

О) 0 С) -17 М) 3 Я) ∞

8. hello_html_m23758d7a.gif

И) 7 Д) 0 Н) 3 К) -1

9. hello_html_756b8798.gif

Ж) 1/2 Ъ) 5 Н) 0 Ю) 1

10. hello_html_76266fa2.gif

А) 5 Ы) 0 Ч) 5/2 Ц) 2

11. hello_html_11fa2df3.gif


Т) 3 З) -1 Б) 0 Я) 9



1

2

3

4

5

6

7

8

9

10

11














Историческая справка (видеоролик):

Термин «производная» является буквальным переводом на русский французского слова deriveе, которое ввел в 1797 году Ж. Лагранж (1736 – 1813); он же ввел современные обозначения у’, f ’. Исаак Ньютон называл производную функцию флюксией, а саму функцию – флюентой. Г. Лейбниц говорил о дифференциальном отношении и обозначал производную как hello_html_m63d218e5.gif.

Систематическое учение о производных развито Лейбницем и Ньютоном. Если Ньютон находил в основном из задач механики, то Лейбниц по преимуществу находил из геометрических задач. Свои результаты в этой области Ньютон изложил в трактате, названным им «Метод флюксий и бесконечных рядов», но его трактат был опубликован лишь посмертно в 1736 г. Первая печатная работа по дифференциальному исчислению была опубликована Лейбницем в 1684 г., озаглавленная «Новый метод максимумов и минимумов, а также касательных, для которого не являются препятствием дробные и рациональные количества, и особый для этого род исчисления».


  1. Целеполагание.


П: Какие цели вы хотели бы реализовать на этом уроке?


  1. Первичное усвоение новых знаний.


П: Итак, на каждом столе лежит запакованный конверт. Никто не знает, что в этом конверте. Сейчас, вы должны распаковать свои конверты и рассмотреть материалы, которые в них находятся, материалы размножены в трех экземплярах, чтобы каждый смог прочитать и сделать для себя записи. Затем, командир распределит работу во всей группе так, чтобы каждый член группы мог внести свою лепту в объяснение темы. Также в каждом конверте находится чистая бумага, фломастеры и цветные карандаши для образного восприятия темы. Следующим пунктом нашего занятия будет объяснение того материала, который находится в ваших конвертах всей группе. Для этого вы должны будете выбрать двух человек с группы, для того, чтобы они объяснили тему у доски: один из них объясняет, а другой показывает на рисунках. Приступайте.

(Работа студентов по группам)

П: Часто бывает так, что, решая задачи, очень далекие друг от друга по содержанию, мы приходим к одной и той же математической модели. Сила математики состоит в том, что она разрабатывает способы оперирования с той или иной математической моделью, которыми потом пользуются в других областях знаний. Вы умеете работать со многими математическими моделями — уравнениями, неравенствами, системами уравнений, системами неравенств и др. В этом параграфе речь пойдет о принципиально новой для вас математической модели. Сначала рассмотрим две различные задачи, физическую и геометрическую, процесс решения которых как раз и приводит к возникновению новой математической модели. Итак , консультанты первой группы идут нам рассказывать о материале, который изучали.

С: Задача 1 (о скорости движения). По прямой, на которой заданы начало отсчета, единица измерения (метр) и направление, движется некоторое тело (материальная точка). Закон движения задан формулой s=s (t), где t — время (в секундах), s (t) — положение тела на прямой (координата движущейся материальной точки) в момент времени t по отношению к началу отсчета (в метрах). Найти скорость движения тела в момент времени t (в м/с).

Решение. Предположим, что в момент времени t тело находилось в точке М(рис. 114), пройдя путь от начала движения ОМ = s{t). Дадим аргументу t привращение Alga723.jpg и рассмотрим момент времени Alga724.jpg Координата материальной точки стала другой, тело в этот момент будет находиться в точке Задание
Значит, за
 Alga723.jpg секунд тело переместилось из точки М в точку Р, т.е. прошло путь МР. Имеем: Задание
Полученную разность мы назвали в § 31 приращением функции:
 Задание

Задание
Путь
 Alga729.jpg тело прошло за Alga731.jpg секунд. Нетрудно найти среднюю скорость Alga730.jpg движения тела за промежуток времени


Задание
А что такое скорость v (t) в момент времени t (ее называют иногда мгновенной скоростью)? Можно сказать так: это средняя скорость движения за промежуток времени
 Промежуток времени  выбирается все меньше и меньше; иными словами, при условии, что Задание
Подводя итог решению задачи 1, получаем:

Задание

П: Прежде чем сформулировать вторую задачу и приступить к ее решению, обсудим вопрос, что следует понимать под касательной к плоской кривой. Термином «касательная» мы уже пользовались (на интуитивном уровне) в курсе алгебры 7—9-го классов. Например, мы говорили, что парабола у = х2 касается оси х в точке х=0 или, что то же самое, ось х является касательной к параболе у = х2 в точке х=0 (рис. 115). Иделоне в том, что ось х и парабола имеют одну общую точку. Ведь ось у тоже имеет с параболой у = х2 одну общую точку, однако у вас не возникнет желания назвать ось у касательной к параболе. Обычно касательную определяют следующим образом.

Дана кривая Ь (рис. 116), на ней выбрана точка М. Возьмем еще одну точку на кривой, причем достаточно близкую к М, — точку Р. Проведем секущую МР. Далее будем приближать точку Р по кривой Ь к точке М. Секущая МР будет изменять свое положение, она как бы поворачивается вокруг точки М. Часто бывает так, что можно обнаружить в этом процессе прямую, представляющую собой некое предельное положение секущей; эту прямую — предельное положение секущей — называют касательной к кривой Ь в точке М.

Графики
Поставим эксперимент: возьмем параболу у = х
2, проведем секущую ОР, где О — вершина параболы, Р — текущая точка. Возьмем точку Р поближе к О, проведем вторую секущую. Возьмем точку Р еще ближе к О, проведем третью секущую и т.д. Вы обнаружите, что предельным положением этих секущих будет ось х — это и есть касательная к параболе в ее вершине (что соответствует нашим интуитивным представлениям). А сейчас, о геометрическом смысле производной нам расскажет вторая подгруппа.

С: Задача 2 (о касательной к графику функции). Дан график функции у = f(х). На нем выбрана точка М(а; f(а)), в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

Решение. Дадим аргументу приращение Ах и рассмотрим на графике (рис. 117) точку Р с абсциссой Alga737.jpg. Ордината точки Р равна Alga738.jpg Угловой коэффициент секущей МР, т.е. тангенс угла между секущей и осью х, вычисляется по формуле

График
Если мы теперь устремим Ах к нулю, то точка Р начнет приближаться по кривой к точке М. Касательную мы охарактеризовали как предельное положение секущей при этом приближении. Значит, естественно считать, что угловой коэффициент касательной
 Задание
Используя приведенную выше формулу для

График

П: Подведем итоги. Две различные задачи привели в процессе решения к одной и той же математической модели — пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Многие задачи физики, химии, экономики и т.д. приводят в процессе решения к такой же модели. Значит что нам надо сделать?

С: Значит, эту математическую модель надо специально изучить, т.е.:

а)    присвоить ей новый термин;
б)    ввести для нее обозначение;
в)    исследовать свойства новой модели.
П: Этим и займется третья подгруппа.

С: Определение 1. Пусть функция у =f(х) определена в конкретной точке х и в некоторой ее окрестности. Дадим аргументу х приращение f(х), такое, чтобы не выйти из указанной окрестности. Найдем соответствующее приращение функции Alga742.jpg Если существует предел этого отношения при условии Alga743.jpg то указанный предел называютпроизводной функции у = f(х) в точке х и обозначают f'(х).
Итак,
Формула
Для обозначения производной часто используют символ у'.
Отметим, что у'=f'(х) — это новая функция, но, естественно, связанная с функцией у = f(x), определенная во всех таких точках х, в которых существует указанный выше предел. Эту функцию называют так: производная функции у =f(х).
В примере 6 § 31 мы доказали, что для линейной функции у =кх + m справедливо равенство:
Формула
Это означает, что у'=к или, подробнее,

Формулы
В примере 7 § 31 мы доказали, что для функции у = х
2 справедливо равенство Формула
Это означает, что у'=2х или подробнее,

Формула
Рассмотренные в п. 1 задачи 1 и 2 позволяют истолковать производную с физической и геометрической точек зрения.
Физический (механический) смысл производной состоит в следующем. Если s(t) — закон прямолинейного движения тела, то производная выражает мгновенную скорость в момент времени t.

График
На практике во многих отраслях науки используется обобщение полученного равенства: если некоторый процесс протекает по закону s =s (t), то производная s'(t) выражает скорость протекания процесса в момент времени t.
Геометрический смысл производной состоит в следующем. Если к графику функции у = f(х) в точке с абсциссой х=а можно провести касательную, непараллельную оси у, то f'(а) выражает угловой коэффициент касательной (рис. 119):

Формула
Поскольку к =tga, то верно равенство f'(а) =1tg а (рис. 119).
А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция у = f(х) имеет производную в конкретной точке х:

Формула
Это означает, что в достаточно малой окрестности точки х выполняется приближенное равенство:
 Задание
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной (в заданной точке х). Например, для функции у = х
2 справедливо приближенное равенство Равенство

Если функция у = f(х) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру отыскания производной функции у = f(x) называют дифференцированием функции у = f(x). 
П: Итак, сделаем вывод: если внимательно прочитать определение производной, то мы обнаружим, что в нем заложен алгоритм отыскания производной. Сформулируем его.

Алгоритм

П: Приведем примеры:

Пример 1. Найти производную постоянной функции у =С.

Решение. Воспользуемся алгоритмом отыскания производной.
1)    Для фиксированного значения х имеем: f (х) = С.
Задание
Пример 2. Найти производную функции Alga756.jpg.
Решение. Воспользуемся алгоритмом отыскания производной.
1)    Для фиксированного значения х (разумеется, мы полагаем, что

Задание

  1. Первичная проверка понимания .


П: Что же такое производная? Какие формулы для вычисления производной мы изучили?

Выполним № 27.1 (а, в). К доске идет…

hello_html_m28856e52.gif

Решение:


C:\Users\Игорь\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\138.gif


C:\Users\Игорь\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\138.gif

Выполним № 27.13 (а, в)

hello_html_m30c5654e.gif


hello_html_521e493b.gif


Решение:

C:\Users\Игорь\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\140.gif


Резерв: № 27.9

hello_html_706fe922.gif

hello_html_m6e9487ab.gif

Решение:

C:\Users\Игорь\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\140.gif



  1. Контроль усвоения


П: Я раздаю вам небольшие листочки, на которых даны задания по теме. Командир раздает каждому из вас по 1-2 задания и с помощью ответов собираете пазл, который вы склеиваете при помощи скотча и вешаете на доску. У всех трех групп должно получиться 1 выражение, которое символизирует сегодня наш урок. А пока вы решаете примеры, командиры, пожалуйста, принесите мне листочки с вашими отметками. (Величие человека - в его способности мыслить) Как вы понимаете это выражение?


  1. Информация о домашнем задании, инструктаж по его выполнению .


Дома вы выполняете № 27.1(б, г), № 27.13 (б, г). Посмотрите в учебники и скажите, что вам может быть непонятно при решении заданий?


  1. Итог занятия.

Реализованы ли цели, которые вы поставили для себя в начале занятия? Что нового для себя вы узнали?


  1. Рефлексия.

На доске висит картинка. Но эта девушка немного грустна, т.к. на ее волосах не хватает аксессуаров. Сейчас мы это исправим. На столе лежат бантики трех цветов: красные, желтые и зеленые. Вы должны будете повесить эти бантики на волосы девушки. Зеленый цвет вешают те студенты, которым понравился урок и тема им была понятна, желтый – если урок вам понравился, но тему вы недопоняли, а красный – если вы ничего не поняли на уроке и он вам не понравился.

Спасибо за занятие. До свидания.




Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Краткое описание документа:

 

 

 Тема: Произоводная

Тип занятия: комбинированный

Цели:

1.         Образовательная:

•          повторить формулы на преобразование тригонометрических выражений;

•          изучить: понятие производной функции, правила вычисления производных;

•          понять таблицу производных и суметь ее применять при решении заданий.

2.         Развивающая:

•          развивать умение работать в группе;

•          развивать логическое мышление.

3.         Воспитывающая:

•          воспитывать чувство такта, математическую культуру;

•          интерес к углубленному изучению математики.

Результат занятия: после проведения занятия студенты должны:

•          знать: как математически определенные функции могут описывать реальные зависимости;

•          уметь: решать уравнения с помощью производной функции.

Оборудование: учебник, раздаточный материал, картинки для рефлексиию

Литература:

1.         Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень) / А.Г. Мордкович, И.М. Смирнова [и др.]. – 8-е изд., стер. – М. : Мнемозина, 2013. – 431 с. : ил.

2.         Поурочные разработки по математике. 10 класс. К УМК А.Г. Мордковича

3.         http://obrazovanie66.ru/main_prof.php?profid=342

4.         http://go.mail.ru/search_images

Автор
Дата добавления 12.03.2015
Раздел Математика
Подраздел Конспекты
Просмотров272
Номер материала 439692
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх