Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Конспект занятия математического кружка «Логика» для начальной школы (4 класс). Тема: «Отношения между множествами. Круги Эйлера»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Конспект занятия математического кружка «Логика» для начальной школы (4 класс). Тема: «Отношения между множествами. Круги Эйлера»

библиотека
материалов

Негосударственное образовательное учреждение

общеобразовательная школа-интернат №15 ОАО «РЖД»



















Конспект занятия математического кружка «Логика» для начальной школы (4 класс).


Тема: «Отношения между множествами. Круги Эйлера»




Юреева Елена Дмитриевна,

учитель математики

высшей категории

















г. Челябинск 2015

Конспект занятия математического кружка «Логика» для начальной школы (4 класс).

Тема: Отношения между множествами. Круги Эйлера.

Место урока в теме: 2 урок в теме «Множества»

Форма урока: комбинированный.

Цель урока: Создать условия для более глубокого и качественного усвоения учащимися темы: «Отношения между множествами»

Задачи: 1)Ознакомить учащихся с простейшими понятиями теории множеств и действий над ними с помощью их прямого конструирования из заданных элементов в виде диаграмм Эйлера.

2)Обеспечить развитие конструкторско-практической деятельности учащихся, направленной на формирование наглядно-образного мышления, внимания, воображения и творчества.

3)Отработать в интерактивном режиме элементарных базовых умений и тем самым повысить уровень стартовых возможностей учащегося в овладении умениями комплексного характера при переходе в среднюю школу.

4)Воспитать в учениках целеустремлённость в достижении положительного результата и прочного познавательного интереса к математике.

Ожидаемый результат: Сформировать у учащихся прочные знания, умения и навыки по теме «Отношения между множествами»

Ход урока:

I. Организационный момент: подготовка рабочего места учащегося, установка ЦОР «Математика и конструирование» на ученические ПК и запуск их в терминале УЧЕНИК под своими фамилиями (До этого в терминале АДМИНИСТРАТОР вносим ФИО учителя, номер класса и списочный его состав)

II.Мотивация целей урока: Понятие множества является одним из основных понятий математики т.к. часто приходится рассматривать те или иные группы объектов как единое целое и поэтому не определяется через другие. Т.к. зрительная память развита у большинства лучше, то все множества мы сегодня будем рассматривать в виде графических образов, тем более, что отношения между множествами для наглядности изображают в виде особых чертежей о которых мы поговорим позднее. Кроме этого ваша работа сегодня будет связана с компьютерами, а я знаю, что вы это любите. Но чтобы не навредить своему здоровью, нам необходимо вспомнить технику безопасности. (Проходим инструктаж по технике безопасности)

III. Повторение:

Учитель: Понятие множества можно пояснить на примерах. Приведите примеры знакомых вам множеств.

Ученики: множество учащихся некоторого класса, множество букв русского алфавита, множество натуральных чисел и т.д.

Учитель: В математике не требуется наличие во множестве большого числа предметов- элементов. Вспомните, пожалуйста, виды множеств и приведите примеры.

Ученики: 1. конечное множество (однозначные числа, алфавит и т.д.)

2. бесконечное множество (натуральные числа, множество треугольников )

3hello_html_m659a4f4.gif. пустое множество

Учитель: Назовите способы задания множеств.

Ученики: Множество можно задать, перечислив все его элементы (множество дней недели), если множество-конечно. Однако, если множество бесконечно, то его элементы перечислить нельзя. И очень большие множества тоже таким образом перечислить трудно. В таких случаях – указывают характеристическое свойство его элементов.

Учитель: Вспомним понятие элементов множества и их принадлежность этому множеству. Для этого садимся за ПК и выполняем тест на повторение основных понятий прошлого занятия. [ЦОР «Математика и конструирование » в терминале УЧЕНИК под своей фамилией - Математические маршруты – Логика, множества, комбинаторика. – Операции над множествами – Тест 1 (задания 1 – 5, 7, 8)]

Ученики выполняют тест (5 минут) Учитель в журнале оценивает работу каждого.


  • Минутка отдыха (специальные упражнения для глаз, спины и шеи)


Ihello_html_m2ddff2b3.gifV.Новая тема: Отношения между множествами могут быть: пересечение, объединение, включение (подмножества) и равенство. Даны два множества: А = hello_html_21fed30a.gifa,b,c,d,ehello_html_m5061e6c1.gif и В = hello_html_21fed30a.gifb,d,k,ehello_html_m5061e6c1.gif. Элементы b и d принадлежат одновременно этим множествам и называются –общими элементами множеств А и В, а сами множества пересекаются. Если множества не имеют общих элементов, то они не пересекаются. Запишем обозначения и схему.

hello_html_6b78dc00.gifhello_html_m3dacfcb8.gifhello_html_m5e7afbac.gifhello_html_79d38d4d.gif

А∩В= Ø А∩В={b,d,e}



Удобно находить пересечение множеств, если элементы перечислены, но как определить пересечение, если заданно характеристическое свойство? Из определения следует, что характеристическое свойство множества А и В составляется из характеристических свойств пересекаемых множеств с помощью союза “и”

Учитель: Давайте рассмотрим пример и запишем правильность оформления: Найти пересечение множества А – чётных натуральных чисел и множества В – двузначных натуральных чисел. Характеристическое свойство элементов множества А –«быть чётными натуральными числами», характеристическое свойство элементов множества В –«быть двузначными натуральными числами» Тогда, согласно определению, элементы пересечения данных множеств должны обладать свойством «быть чётными и двузначными натуральными числами» Таким образом, множество А∩В состоит из чётных двузначных чисел.

Мhello_html_m5fef88b6.gifножество А называется подмножеством множества В, если каждый элемент множества А является также элементом множества В. Обозначения и схема

hello_html_25fe4753.gif

А Ċ В




Множества А и В называются равными, если А Ċ В и В Ċ А. Обозначения и схема

hello_html_4a6f214b.gifА=В



Оhello_html_m767d9c78.gifhello_html_79d38d4d.gifhello_html_m35ce88eb.gifhello_html_m3dacfcb8.gifбъединением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А или множеству В. Обозначения и схема

hello_html_7d856d91.gifhello_html_m5693c1fa.gif

А




ŲВ = {a,b,c,d,e,k}



Удобно находить объединение множеств, если элементы перечислены, но как определить объединение, если заданно характеристическое свойство? Из определения следует, что характеристическое свойство множества А В составляется из характеристических свойств объединяемых множеств с помощью союза “или”

Учитель: Давайте рассмотрим пример и запишем правильность оформления: Найти объединение множества А – чётных натуральных чисел и множества В – двузначных натуральных чисел. Характеристическое свойство элементов множества А –«быть чётными натуральными числами», характеристическое свойство элементов множества В –«быть двузначными натуральными числами» Тогда, согласно определению, элементы объединения данных множеств должны обладать свойством «быть чётными или двузначными натуральными числами» Таким образом, множество А ŲВ состоит из чётных или двузначных чисел.

Наглядно отношения между множествами изображают при помощи особых чертежей, называемых кругами Эйлера.

V. Закрепление: Давайте снова сядем за компьютеры и рассмотрим несколько примеров отношений между множествами [ЦОР «Математика и конструирование » в терминале УЧЕНИК под своей фамилией - Конструкторы – Конструктор множеств (примеры 3, 4, 5, 6)]

Учащиеся в слух рассуждают и выполняют задания вместе. Учитель контролирует процесс, подсказывает, подводит к выводам и правильным ответам. (не более 5 минут)


  • Минутка отдыха ( специальные упражнения для глаз, спины и шеи)


VI.Самостоятельная работа: Для проверки знаний которые вы получили на этом уроке проведём ещё один тест на ПК. [ЦОР «Математика и конструирование » в терминале УЧЕНИК под своей фамилией - Математические маршруты – Логика, множества, комбинаторика. – Операции над множествами – Тест 2.] Ученики выполняют тест, а учитель в журнале отмечает результаты его выполнения.

VII. Рефлексия: И так давайте подведём итоги: что нового вы сегодня узнали, чему научились? (Следуют ответы учащихся)

По итогам теста можно сделать вывод о том, что тема вами ……., оценки получили ……….На следующем занятии кружка мы ещё раз повторим отношения между множествами и научимся решать задачи с помощью кругов Эйлера, а также те кто не справился с тестом сегодня, выполнив Д/з смогут попробовать сделать его ещё раз.

VIII. Домашнее задание: Придумать примеры на все виды отношений между множествами, записать их в тетрадь и зарисовать в виде кругов Эйлера.



hello_html_13375c01.gif


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Конспект занятия математического кружка «Логика» для начальной школы (4 класс).

Тема: Отношения между множествами. Круги Эйлера.

Место урока в теме: 2 урок в теме «Множества»

Форма урока: комбинированный.

Цель урока: Создать условия для более глубокого и качественного усвоения учащимися темы: «Отношения между множествами»

Задачи: 1)Ознакомить учащихся с простейшими понятиями теории множеств и действий над ними с помощью их прямого конструирования из заданных элементов в виде диаграмм Эйлера.

2)Обеспечить развитие конструкторско-практической деятельности учащихся, направленной на формирование наглядно-образного мышления, внимания, воображения и творчества.

3)Отработать в интерактивном режиме элементарных базовых умений и тем самым повысить уровень стартовых возможностей учащегося в овладении умениями комплексного характера при переходе в среднюю школу.

4)Воспитать в учениках целеустремлённость в достижении положительного результата и прочного познавательного интереса к математике.

 

Ожидаемый результат: Сформировать у учащихся прочные знания, умения и навыки по теме «Отношения между множествами»

Автор
Дата добавления 07.05.2015
Раздел Математика
Подраздел Конспекты
Просмотров2120
Номер материала 516263
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх