Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Контрольные работы Геометрия 9 кл

Контрольные работы Геометрия 9 кл

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Контрольная работа № 1

1 вариант.


1). Начертите два неколлинеарных вектора и . Постройте векторы, равные:

а). ; б).

2). На стороне ВС ромба АВСD лежит точка К такая, что ВК = КС, О – точка пересечения диагоналей. Выразите векторы через векторы и .

3). В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.

4). * В треугольнике АВС О – точка пересечения медиан. Выразите вектор через векторы и .


2 вариант


1). Начертите два неколлинеарных вектора и . Постройте векторы, равные:

а). ; б).

2). На стороне СD квадрата АВСD лежит точка Р такая, что СР = РD , О – точка пересечения диагоналей. Выразите векторы через векторы и .

3). В равнобедренной трапеции один из углов равен 600, боковая сторона равна 8 см, а меньшее основание 7 см. Найдите среднюю линию трапеции.

4). * В треугольнике МNK О – точка пересечения медиан, . Найдите число k.

Контрольная работа № 2

1 вариант.


1). Найдите координаты и длину вектора , если .

2). Напишите уравнение окружности с центром в точке А (- 3;2), проходящей через точку В (0; - 2).


3). Треугольник МNK задан координатами своих вершин: М ( - 6; 1 ), N (2; 4 ), К ( 2; - 2 ).

а). Докажите, что Δ- равнобедренный;

б). Найдите высоту, проведённую из вершины М.


4). * Найдите координаты точки N, лежащей на оси абсцисс и равноудалённой от точек Р и К, если Р( - 1; 3 ) и К( 0; 2 ).


2 вариант.


1). Найдите координаты и длину вектора , если .

2). Напишите уравнение окружности с центром в точке С ( 2; 1 ), проходящей через точку D ( 5; 5 ).


3). Треугольник СDЕ задан координатами своих вершин: С ( 2; 2 ), D (6; 5 ), Е ( 5; - 2 ).

а). Докажите, что Δ- равнобедренный;

б). Найдите биссектрису, проведённую из вершины С.


4). * Найдите координаты точки А, лежащей на оси ординат и равноудалённой от точек В и С, если В( 1; - 3 ) и С( 2; 0 ).


Контрольная работа № 3

1 вариант


1). В треугольнике АВС А = 450,

В = 600, ВС = Найдите АС.


2). Две стороны треугольника равны

7 см и 8 см, а угол между ними равен 1200. Найдите третью сторону треугольника.

3). Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).


4). * В ΔАВС АВ = ВС, САВ = 300, АЕ – биссектриса, ВЕ = 8 см. Найдите площадь треугольника АВС.



2 вариант


1). В треугольнике СDE С = 300,

D = 450, СЕ = Найдите DE.


2). Две стороны треугольника равны

5 см и 7 см, а угол между ними равен 600. Найдите третью сторону треугольника.


3). Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).


4). * В ромбе АВСD АК – биссектриса угла САВ, ВАD = 600, ВК = 12 см. Найдите площадь ромба.

Контрольная работа № 4

1 вариант


1). Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равна

2). Вычислите длину дуги окружности с радиусом 4 см, если её градусная мера равна 1200. Чему равна площадь соответствующего данной дуге кругового сектора?

3). Периметр правильного треугольника, вписанного в окружность, равен Найдите периметр правильного шестиугольника, описанного около той же окружности.


2 вариант


1). Найдите площадь круга и длину ограничивающей его окружности, если сторона квадрата, описанного около него, равна 6 см.

2). Вычислите длину дуги окружности с радиусом 10 см, если её градусная мера равна 1500. Чему равна площадь соответствующего данной дуге кругового сектора?

3). Периметр квадрата, описанного около окружности, равен 16 дм. Найдите периметр правильного пятиугольника, вписанного в эту же окружность.


Контрольная работа № 5

1 вариант


1). Начертите ромб АВСD. Постройте образ этого ромба:

а). при симметрии относительно точки С;

б). при симметрии относительно прямой АВ;

в). При параллельном переносе на вектор ;

г). При повороте вокруг точки D на 600 по часовой стрелке.


2). Докажите, что прямая, содержащая середины двух параллельных хорд окружности, проходит через её центр.


3). * Начертите два параллельных отрезка, длины которых равны. начертите точку, являющуюся центром симметрии, при котором один отрезок отображается на другой.


2 вариант


1). Начертите параллелограмм АВСD. Постройте образ этого параллелограмма:

а). при симметрии относительно точки D;

б). при симметрии относительно прямой CD;

в). При параллельном переносе на вектор ;

г). При повороте вокруг точки А на 450 против часовой стрелки.


2). Докажите, что прямая, содержащая середины противоположных сторон параллелограмма, проходит через точку пересечения его диагоналей.


3).* Начертите два параллельных отрезка, длины которых равны. Постройте центр поворота, при котором один отрезок отображается на другой.













Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 12.04.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров405
Номер материала ДБ-027364
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх