Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Контрольные работы по геометрии 9 класс (Атанасян)

Контрольные работы по геометрии 9 класс (Атанасян)

  • Математика

Поделитесь материалом с коллегами:

Контрольная работа №1. Векторы.

Контрольная работа №1. Векторы.

Вариант 1.

Вариант 2.


1. ABCD – параллелограмм, hello_html_4290a5ec.gif Найдите разложение вектора hello_html_m18caf264.gif по неколлинеарным векторам hello_html_m7eb88c1a.gif.


2. Дана трапеция ABCD с основаниями AD=20 и BC=8, О -точка пересечения диагоналей. Разложите вектор hello_html_20ea3fd.gif по векторам hello_html_m4c466ff6.gif=hello_html_464482e5.gifи hello_html_m69e3ade7.gif.


3. Диагонали ромба АС = а, BD = b. Точка Khello_html_m2e28bbd1.gif BD и BK : KD = 1 : 3. Найдите величину |hello_html_m6d57d6bd.gif|.


4. В равнобедренной трапеции острый угол равен 60hello_html_m28215024.gif, боковая сторона равна 12 см, большее основание равно 30 см. Найдите среднюю линию трапеции.


5. В прямоугольнике ABCD известно, что AD=a, DC=b, O точка пересечения диагоналей. Найдите величину hello_html_m43f4d50c.gif



1. ABCD – параллелограмм, hello_html_m70e17470.gif Найдите разложение вектора hello_html_m18caf264.gif по неколлинеарным векторам hello_html_m7eb88c1a.gif.


2. Дана трапеция ABCD с основаниями AD=15 и BC=10, О -точка пересечения диагоналей. Разложите вектор hello_html_m7ebd52bc.gif по векторам hello_html_m4c466ff6.gif=hello_html_464482e5.gifи hello_html_m69e3ade7.gif.


3. Диагонали ромба АС = а, BD = b. Точка Khello_html_m2e28bbd1.gif AC и AK : KC = 2: 3. Найдите величину |hello_html_317987d0.gif|.


4. В равнобедренной трапеции острый угол равен 60hello_html_m28215024.gif, боковая сторона равна 10 см, меньшее основание равно 14 см. Найдите среднюю линию трапеции.


5. В прямоугольнике ABCD известно, что AB=a, BC=b, O точка пересечения диагоналей. Найдите величину hello_html_1ff015d9.gif.



















Контрольная работа №2.

Метод координат.

Контрольная работа №2.

Метод координат.

Вариант 1.

Вариант 2.


1. Установите связь между векторами hello_html_89c1b6e.gif


2. Векторы hello_html_ca803bb.gif разложены по неколлинеарным векторам hello_html_464482e5.gifи hello_html_m22f25179.gif. Разложите векторы hello_html_m7eb88c1a.gif по векторам hello_html_1bba6cc.gif.


3. Четырехугольник имеет вершины с координатами А (1;1), В (3;5), С (9;-1), D(7;-5). Определите вид четырехугольника (с обоснованием) и найдите его диагонали.


4. Напишите уравнение окружности с центром в точке С (-3;1), проходящей через точку А (2;3).


5. Прямая l проходит через точки А (-3;1) и В (1;-7). Напишите уравнение прямой m, проходящей через точку С(5;6) и перпендикулярной прямой l.



1. Установите связь между векторами hello_html_6c5e062b.gif


2. Векторы hello_html_6fa81f3d.gif разложены по неколлинеарным векторам hello_html_464482e5.gifи hello_html_m22f25179.gif. Разложите векторы hello_html_m7eb88c1a.gif по векторам hello_html_1bba6cc.gif.


3. Четырехугольник имеет вершины с координатами А (-6;1), В (2;5), С (4;-1), D(-4;-5). Определите вид четырехугольника (с обоснованием) и найдите его диагонали.


4. Напишите уравнение окружности с центром в точке С (2;-3), проходящей через точку А (-1;-2).


5. Прямая l проходит через точки А (2;-1) и В (-3;9). Напишите уравнение прямой m, проходящей через точку С(3;10) и перпендикулярной прямой l.




















Контрольная работа №3.

Соотношение между сторонами и углами треугольника. Скалярное произведение векторов.

Контрольная работа №3.

Соотношение между сторонами и углами треугольника. Скалярное произведение векторов.

Вариант 1.

Вариант 2.


1. Упростите выражение


hello_html_5bf86556.gif

hello_html_51a6db5f.gif


2. В треугольнике АВС hello_html_m2671d278.gif. Найдите площадь треугольника и радиус окружности, описанной около него.


3. В параллелограмме ABCD даны стороны АВ=4 см, AD=5hello_html_39f1b7ec.gif см и угол hello_html_7b0d509f.gif Найдите диагонали параллелограмма и его площадь.


4. Найдите координаты вектора hello_html_m22f25179.gif, если hello_html_155a7c70.gifа угол между вектором hello_html_m22f25179.gifи положительным направлением оси абсцисс острый.


5. Вычислите скалярное произведение векторов hello_html_m68d0a18.gif, если hello_html_55755d42.gif



1. Упростите выражение


hello_html_160e2411.gif


2. В треугольнике АВС hello_html_m58c98c14.gif. Найдите площадь треугольника и радиус окружности, описанной около него.


3. В параллелограмме ABCD даны стороны АВ=8 см, AD=3hello_html_5909bbae.gif см и угол hello_html_23605ff2.gif Найдите диагонали параллелограмма и его площадь.


4. Найдите координаты вектора hello_html_m22f25179.gif, если hello_html_m45a3d1ed.gifа угол между вектором hello_html_m22f25179.gifи положительным направлением оси абсцисс тупой.


5. Вычислите скалярное произведение векторов hello_html_mf62b5e4.gif, если hello_html_4f361c27.gif

















Контрольная работа №4. Длина окружности и площадь круга.

Контрольная работа №4. Длина окружности и площадь круга.

Вариант 1.

Вариант 2.


1. Три последовательные стороны четырехугольника, описанного около окружности, относятся как 3:4:5. Периметр этого четырехугольника равен 48 см. Найдите длины его сторон.


2. Около правильного шестиугольника описана окружность и в него вписана окружность. Длина большей окружности равна 4π. Найдите площадь кольца и площадь шестиугольника.


3. Хорда окружности равна hello_html_m3bac7ea7.gif и стягивает дугу в 90hello_html_m28215024.gif. Найдите длину дуги и площадь соответствующего сектора.


4. Найдите радиус сектора, если площадь соответствующего сегмента равна

hello_html_m75df05e3.gif.


5. В треугольник вписана окружность радиуса 3 см. Найдите длины сторон треугольника, если одна из них разделена точкой касания на отрезки длиной 4 см и 3 см.



1. Три последовательные стороны четырехугольника, описанного около окружности, относятся как 4:5:6. Периметр этого четырехугольника равен 80 см. Найдите длины его сторон.


2. Около правильного треугольника описана окружность и в него вписана окружность. Длина меньшей окружности равна 8π. Найдите площадь кольца и площадь треугольника.


3. Хорда окружности равна 6 и стягивает дугу в 60hello_html_m28215024.gif. Найдите длину дуги и площадь соответствующего сектора.


4. Найдите радиус сектора, если площадь соответствующего сегмента равна

hello_html_m2242aa2d.gif.


5. В треугольник вписана окружность радиуса 4 см. Найдите длины сторон треугольника, если одна из них разделена точкой касания на отрезки длиной 4 см и 5 см.



















Контрольная работа №5. Движения.

Контрольная работа №5. Движения.

Вариант 1.

Вариант 2.


1. Точка А (-2;3) симметрична точке А1 (6;-9) относительно точки В. Найдите координаты точки В.


2. Дан треугольник АВС с вершинами А(2;1), В(-6;1), С(-1;5). Треугольник А1В1С1 симметричен треугольнику АВС относительно прямой, заданной уравнением х=1. Найдите координаты вершин А1, В1, С1.


3. Найдите вектор hello_html_m12406160.gif параллельного переноса, при котором прямая у=3х-2 переходит в прямую у=3х+4, а прямая 3х+2у=2 переходит в прямую 6х+4у=3.


4. В результате поворота вокруг точки В(1;2) на 60hello_html_m28215024.gif против часовой стрелки точка А(4;2) перешла в точку А1. Найдите координаты этой точки.


5. Прямая m задана уравнением 3х+2у-5=0. Прямая n симметрична прямой m относительно точки В(2;3). Напишите уравнение прямой n.



1. Точка А (-3;1) симметрична точке А1 (9;-5) относительно точки В. Найдите координаты точки В.


2. Дан треугольник АВС с вершинами А(-4;5), В(1;5), С(-3;-1). Треугольник А1В1С1 симметричен треугольнику АВС относительно прямой, заданной уравнением у=1. Найдите координаты вершин А1, В1, С1.


3. Найдите вектор hello_html_m12406160.gif параллельного переноса, при котором прямая у=2х-1 переходит в прямую у=2х+3, а прямая 2х+3у=1 переходит в прямую 4х+6у=5.


4. В результате поворота вокруг точки В(2;1) на 30hello_html_m28215024.gif против часовой стрелки точка А(6;1) перешла в точку А1. Найдите координаты этой точки.


5. Прямая m задана уравнением 2х+3у-7=0. Прямая n симметрична прямой m относительно точки В(3;2). Напишите уравнение прямой n.


















Контрольная работа №6.

Итоговая по программе 9 класса.

Контрольная работа №6.

Итоговая по программе 9 класса.

Вариант 1.

Вариант 2.


1. В параллелограмме ABCD точка Ehello_html_m6e3bde72.gif, AE:EC=1:5. Разложите вектор hello_html_me217bb6.gif по векторам hello_html_3adcdc40.gif


2. Найдите косинус угла между векторами hello_html_mc08216f.gif, если hello_html_m50f0ff07.gif и угол между векторами hello_html_m7eb88c1a.gif равен 30hello_html_m28215024.gif.


3. Около круга радиусом R описан правильный шестиугольник. Найдите разность между площадью шестиугольника и круга.


4. Напишите уравнение окружности, симметричной относительно точки А (-1;3) окружности, заданной уравнением х2+у2-4х+6у=0


5. Первая окружность радиуса 4 см касается трех сторон прямоугольника. Вторая окружность касается первой внешним образом, а также касается сторон прямого угла. Найдите максимальный радиус второй окружности, если стороны прямоугольника равны 8 см и 12 см.



1. В параллелограмме ABCD точка Ehello_html_m525cabce.gif, BE:ED=1:4. Разложите вектор hello_html_m18aea306.gif по векторам hello_html_3adcdc40.gif


2. Найдите косинус угла между векторами hello_html_7e9cdb9c.gif, если hello_html_m50f0ff07.gif и угол между векторами hello_html_m7eb88c1a.gif равен 30hello_html_m28215024.gif.


3. Около круга радиусом R описан правильный треугольник. Найдите разность между площадью треугольника и круга.


4. Напишите уравнение окружности, симметричной относительно точки А (-2;3) окружности, заданной уравнением х2+у2+6х-4у=0


5. Первая окружность радиуса 9 см касается трех сторон прямоугольника. Вторая окружность касается первой внешним образом, а также касается сторон прямого угла. Найдите максимальный радиус второй окружности, если стороны прямоугольника равны 18 см и 20 см.

















Контрольная работа № 7. Итоговая по курсу геометрии (7-9 классы)

Контрольная работа № 7. Итоговая по курсу геометрии (7-9 классы)

Вариант 1.

Вариант 2.


1. В равнобедренный треугольник с основанием 10 см и боковой стороной 5hello_html_39f1b7ec.gif см вписан квадрат так, что две его вершины лежат на основании, а другие две вершины – на боковых сторонах. Найдите сторону квадрата.


2. Найдите площадь круга, вписанного в ромб с диагоналями, равными 12 см и 16 см.


3. Найдите длину медианы ВМ треугольника АВС, если координаты вершин треугольника А (2;5), В (0;0), С(4;3).


4. Точка М является серединой боковой стороны АВ трапеции ABCD. Найдите площадь трапеции, если площадь треугольника MCD равна 28 см2.


5. Окружность радиуса 2 см, центр О которой лежит на гипотенузе АС прямоугольного треугольника АВС, касается его катетов. Найдите площадь треугольника АВС, если ОА=hello_html_1e398b2a.gif см.


1. В равнобедренный треугольник с основанием 14 см и боковой стороной 7hello_html_39f1b7ec.gif см вписан квадрат так, что две его вершины лежат на основании, а другие две вершины – на боковых сторонах. Найдите сторону квадрата.


2. Найдите площадь круга, вписанного в ромб с диагоналями, равными 16 см и 30 см.


3. Найдите длину медианы СР треугольника АВС, если координаты вершин треугольника А (-3;-2), В (-13;14), С(0;0).


4. Точка М является серединой боковой стороны АВ трапеции ABCD. Найдите площадь треугольника MCD, если площадь трапеции равна 38 см2.


5. Окружность радиуса 3 см, центр О которой лежит на гипотенузе АС прямоугольного треугольника АВС, касается его катетов. Найдите площадь треугольника АВС, если ОА=hello_html_mfce62eb.gif см.


Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 24.08.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров123962
Номер материала ДA-014115
Получить свидетельство о публикации

Комментарии:

4 месяца назад
Где взять ответы?
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх