Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Тесты / Контрольно-измерительные материалы по геометрии 11 класс (профильный уровень) по учебнику "Геометрия 10-11" Л.С. Атанасян, В.Ф. Бутузов и др.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Контрольно-измерительные материалы по геометрии 11 класс (профильный уровень) по учебнику "Геометрия 10-11" Л.С. Атанасян, В.Ф. Бутузов и др.

библиотека
материалов

Приложение 1

Оценочные материалы


1.Контрольные работы


Контрольная работа №1 «Метод координат»

Вариант 1

1.Даны точки А(-3;1;4), В(1;-5;2), С(-4;6;2), D(2;-4;8).Вычислите расстояние между серединами отрезков АВ и СD.

2.Известны координаты трех точек А(-1;2;-5), В(3;-1;6) и С(4;5;-7). Определите координаты точки пересечения медиан треугольника АВС.

3.В кубе АВСDА1В1С1D1 точка М - центр грани ВВ1С1С. Найдите угол между прямыми АМ и DВ1.

4.Вершины треугольника АВС имеют координаты А(-8;7;-4), В(-6;5;-5) и С(-5;3;-4). Найдите площадь треугольника АВС.

5*.Точки А(5;-1;2) и В(1;3;-4) симметричны относительно плоскости α. Напишите уравнение этой плоскости.


Вариант 2

1.Даны точки А(5;-1;3), В(3;-5;1), С(2;-6;4), D(-4;2;6). Вычислите расстояние между серединами отрезков АВ и СD.

2.Известны координаты трех точек А(2;-1;7), В(-4;3;-1) и С(-1;4;3). Определите координаты точки пересечения медиан треугольника АВС.

3.В кубе АВСDА1В1С1D1 точка М - центр грани АА1В1В. Найдите угол между прямыми DМ и С1В.

4.Вершины треугольника АВС имеют координаты А(-5;2;-3), В(-3;1;-5) и С(-8;6;-3). Найдите площадь треугольника АВС.

5*.Точки А(-3;4;7) и В(1;-2;3) симметричны относительно плоскости α. Напишите уравнение этой плоскости.


Ответы

Контрольная работа №1 «Метод координат»


1

2

3

4

5

Вариант 1

hello_html_59e4fd5e.gif

(2;2;-2)

arccoshello_html_16b0edd4.gif

hello_html_m3a99815c.gif

2х-2у+3z-1=0

Вариант 2

hello_html_m2e78dab1.gif

(-1;2;3)

arccoshello_html_5150facf.gif

hello_html_2b1c098b.gif

2х-3у-2z+15=0



Контрольная работа №2 «Цилиндр, конус, шар»

Вариант 1

1.Диаметр основания цилиндра равен 10 см. На расстоянии 3 см от оси цилиндра проведено сечение, параллельное оси и имеющее форму квадрата. Вычислите площадь этого сечения и площадь осевого сечения цилиндра.

2.Площадь основания конуса равна 15 см2, а площадь боковой поверхности 17 см2. Найдите площадь осевого сечения конуса.

3.В усеченном конусе радиус меньшего основания равен R, высота h, угол между образующей и большим основанием равен α. Вычислите площадь боковой поверхности конуса.

4.Сфера касается одной из параллельных плоскостей и пересекает другую плоскость по окружности радиуса r. Найдите радиус сферы, если расстояние между плоскостями равно а.

5.Сфера, заданная уравнением х22+z2-2х+6у-4z=11, пересечена плоскостью с уравнением х=4. Вычислите площадь сечения и площадь поверхности сферы.


Вариант 2

1.Радиус основания цилиндра, осевое сечение которого квадрат, равен 10 см. На расстоянии 8 см от оси цилиндра проведено сечение, параллельное оси. Вычислите площадь этого сечения и площадь осевого сечения цилиндра.

2.Площадь основания конуса равна 12 см2, а площадь боковой поверхности 13 см2. Найдите площадь осевого сечения конуса.

3.В усеченном конусе радиус меньшего основания равен R, образующая l, угол между высотой конуса и его образующей равен α. Вычислите площадь боковой поверхности конуса.

4.Сфера радиуса R касается одной из параллельных плоскостей и пересекает другую плоскость по окружности. Найдите радиус этой окружности, если расстояние между плоскостями равно а.

5.Сфера, заданная уравнением х22+z2-4х+2у+6z=7, пересечена плоскостью с уравнением у=-3. Вычислите площадь сечения и площадь поверхности сферы.


Ответы

Контрольная работа №2 «Цилиндр, конус, шар»


1

2

3

4

5

Вариант 1

64см2 ; 80см2

8/π см2

hello_html_41640a86.gif

hello_html_m11dc8262.gif

16π; 100π

Вариант 2

240см2; 400см2

5/π см2

hello_html_6f68df2b.gif

hello_html_m49bb9956.gif

17π; 84π



Контрольная работа №3

«Объемы прямого параллелепипеда, прямой призмы и цилиндра»

Вариант 1

1.В прямоугольном параллелепипеде диагонали трех граней, выходящих из одной вершины, равны 7см, 8см и 9см. Вычислите объем параллелепипеда.

2.Площадь большего диагонального сечения правильной шестиугольной призмы равна площади ее основания. Найдите объем призмы, если сторона ее основания равна а.

3.В основании прямой призмы лежит трапеция. Площади параллельных боковых граней призмы равны S1 и S2, а расстояние между ними равно а. Вычислите объем призмы.

4.Периметры боковых граней прямоугольного параллелепипеда равны 16см и 24см. Найдите объем параллелепипеда, имеющего наибольшую боковую поверхность.

5.Прямоугольник с диагональю, равной 2hello_html_5909bbae.gifсм, вращается вокруг одной из сторон. Вычислите объем тела вращения, если этот объем имеет наибольшее возможное значение.


Вариант 2

1.В прямоугольном параллелепипеде диагонали трех граней, выходящих из одной вершины, равны 5см, 7см и 8см. Вычислите объем параллелепипеда.

2.Площадь меньшего диагонального сечения правильной шестиугольной призмы равна площади ее основания. Найдите объем призмы, если ее высота равна h.

3.В основании прямой призмы лежит трапеция. Объем призмы равен V.Площади параллельных боковых граней призмы равны S1 и S2. Вычислите расстояние между ними.

4.Периметры боковых граней прямоугольного параллелепипеда равны 20см и 28см. Найдите объем параллелепипеда, имеющего наибольшую боковую поверхность.

5.Прямоугольник с диагональю, равной 3hello_html_5909bbae.gifсм, вращается вокруг одной из сторон. Вычислите объем тела вращения, если этот объем имеет наибольшее возможное значение.


Ответы

Контрольная работа №3

«Объемы прямого параллелепипеда, прямой призмы и цилиндра»


1

2

3

4

5

Вариант 1

48hello_html_m1b68764f.gifсм3

hello_html_76a2a957.gif

hello_html_5fe1b49c.gif

105см3

16π см3

Вариант 2

20hello_html_m1b68764f.gifсм3

hello_html_m1690f79.gif

hello_html_6d70cdca.gif

192см3

54π см3


Контрольная работа №4

«Объемы наклонной призмы, пирамиды, конуса и шара»

Вариант 1

1.В основании призмы лежит треугольник, у которого одна сторона равна 2см, а две другие по 3см.Боковое ребро равно 6см и составляет с плоскостью основания угол 60º. Найдите объем призмы.

2.Сторона основания правильной треугольной пирамиды равна а, боковое ребро равно в. Найдите объем пирамиды.

3.Радиусы оснований усеченного конуса равны 5см и 20см, образующая равна 17см. Найдите объем усеченного конуса.

4.Сечение, перпендикулярное диаметру шара, делит этот диаметр в отношении 1:2. Вычислите объем меньшего шарового сегмента, отсекаемого от шара, если площадь поверхности шара равна 144π см2.

5.В основании пирамиды лежит ромб со стороной а и углов 60º. Одна из боковых граней перпендикулярна основанию, а две соседние с ней грани образуют с основанием двугранные углы по 30º.Найдите объем пирамиды.


Вариант 2

1.В основании призмы лежит треугольник, у которого одна сторона равна 6см, а две другие по 5см.Боковое ребро равно 4см и составляет с плоскостью основания угол 45º. Найдите объем призмы.

2.Сторона основания правильной четырехугольной пирамиды равна а, боковое ребро равно в. Найдите объем пирамиды.

3.Радиусы оснований усеченного конуса равны 5см и 13см, образующая равна 17см. Найдите объем усеченного конуса.

4.Сечение, перпендикулярное диаметру шара, делит этот диаметр в отношении 1:3. Площадь поверхности шара равна 144π см2. Вычислите объем большего шарового сегмента, отсекаемого от шара.

5.В основании пирамиды лежит ромб со стороной а и углов 30º. Одна из боковых граней перпендикулярна основанию, а две соседние с ней грани образуют с основанием двугранные углы по 45º.Найдите объем пирамиды.



Ответы

Контрольная работа №4

«Объемы наклонной призмы, пирамиды, конуса и шара»


1

2

3

4

5

Вариант 1

6hello_html_63abda47.gifсм3

hello_html_2ea61e48.gif

1400π см3

hello_html_m3395c797.gifсм3

hello_html_m2919b673.gif

Вариант 2

24hello_html_39f1b7ec.gifсм3

hello_html_m1217d636.gif

1295π см3

hello_html_md6859fe.gifсм3

hello_html_mdc70bd7.gif


Итоговая контрольная работа

Вариант 1

В правильной четырехугольной пирамиде МАВСD сторона основания равна 6, а боковое ребро 5. Найдите:

  1. площадь боковой поверхности пирамиды;

  2. объем пирамиды;

  3. угол наклона боковой грани к плоскости основания;

  4. скалярное произведение векторов Описание: http://doc4web.ru/uploads/files/49/48432/hello_html_1c2a1b12.gif;

  5. площадь описанной около пирамиды сферы;

  6. *угол между ВD и плоскостью DMC.


Вариант 2

В правильной четырехугольной пирамиде МАВСD боковое ребро равно 8 и наклонено к плоскости основания под углом 60º. Найдите:

  1. площадь боковой поверхности пирамиды;

  2. объем пирамиды;

  3. угол между противоположными боковыми гранями;

  4. скалярное произведение векторов hello_html_2a0206e3.gif , где Е – середина ;

  5. объем описанного около пирамиды шара;

  6. *угол между боковым ребром АМ и плоскостью DМС.



Ответы

Итоговая контрольная работа


1

2

3

4

5

6

Вариант 1

48

12hello_html_6f5e8cf4.gif

arccos hello_html_m57c90caf.gif

36

hello_html_m242a9754.gif

arcsin hello_html_4e78e6c1.gif

Вариант 2

6hello_html_m7e4f1369.gif

12hello_html_5909bbae.gif

arccos hello_html_36b5a9e0.gif

-12

hello_html_55097974.gif-2)3

arcsin hello_html_m371b22e2.gif



2.Зачеты


Зачет по теме «Векторы в пространстве»

Вопросы к зачету:

  1. Дайте определение: вектора; коллинеарных векторов; сонаправленных векторов; противоположно направленных векторов; компланарных векторов; произведения вектора на число.

  2. Опишите с помощью чертежа: правило треугольника сложения векторов; правило параллелограмма сложения векторов; правило вычитания векторов; правило параллелепипеда для сложения трех некомпланарных векторов

  3. Сформулируйте: признак компланарности векторов; теорему о разложении вектора по трем некомпланарным векторам.


Задания для зачета

Вариант 1.

  1. Верно ли, что векторы, лежащие на боковых ребрах призмы, коллинеарны?

  2. Могут ли три компланарных вектора лежать на трех взаимно перпендикулярных прямых?

  3. Верно ли, что векторы, лежащие на двух прямых, перпендикулярных к третьей, коллинеарны?

  4. Могут ли три вектора, один из которых является суммой двух других, быть некомпланарными?

  5. Точки А и С симметричны относительно плоскости α, а точки В и D симметричны относительно прямой АС. Назовите вектор, равный вектору hello_html_a12aebf.gif

  6. Даны ненулевые векторы hello_html_7154816c.gif,hello_html_67d29cf0.gif hello_html_m3cae3b9.gif hello_html_m22f25179.gif,hello_html_m338f33f8.gif некомпланарны. Назовите два данных вектора, которые вместе с вектором hello_html_m12406160.gifобразуют тройку некомпланарных векторов, если hello_html_m12406160.gif =2hello_html_m6472dc52.gif.

  7. Назовите вектор, равный hello_html_m6228f9b3.gif+hello_html_3b8cd368.gif - hello_html_m2588ab3d.gif

  8. В параллелепипеде АВСDА1В1С1D1 назовите вектор, равный hello_html_m38068ca2.gif - hello_html_5b577768.gif - hello_html_m5a8ae588.gif + hello_html_m2f77e20d.gif.


Вариант 2.

  1. Верно ли, что векторы, лежащие на боковых ребрах пирамиды, коллинеарны?

  2. Могут ли три некомпланарных вектора лежать на трех параллельных прямых?

  3. Верно ли, что векторы, лежащие в двух параллельных плоскостях, коллинеарны?

  4. Могут ли три вектора, один из которых является разностью двух других, быть некомпланарными?

  5. Точки А и С симметричны относительно плоскости α, а точки В и D симметричны относительно прямой АС. Назовите вектор, равный вектору hello_html_m48eb3e5e.gif

  6. Даны ненулевые векторы hello_html_7154816c.gif,hello_html_67d29cf0.gif hello_html_m3cae3b9.gif hello_html_m22f25179.gif,hello_html_m338f33f8.gif некомпланарны. Назовите два данных вектора, которые вместе с вектором hello_html_m12406160.gifобразуют тройку некомпланарных векторов, если hello_html_m12406160.gif = - 3hello_html_m3f2a9f73.gif.

  7. Назовите вектор, равный hello_html_mabae907.gif+hello_html_3b8cd368.gif - hello_html_m8c18a25.gif

  8. В параллелепипеде АВСDА1В1С1D1 назовите вектор, равный hello_html_5c24cfb9.gif - hello_html_m14a9183e.gif - hello_html_m3bc3a268.gif + hello_html_21153167.gif.


Зачет по теме «Метод координат в пространстве»

Вопросы к зачету:

    1. Дайте определение: радиус-вектора точки. Назовите координаты радиус-вектора точки А(а123).

    2. Сформулируйте: правило вычисления координат вектора по координатам его концов.

    3. Запишите формулу: координат середины отрезка; разложения вектора hello_html_m12406160.gif{х;у;z} по координатным векторам; длины вектора; Расстояния между двумя точками.

    4. Дайте определение: скалярного произведения векторов в пространстве.

    5. Запишите формулу: вычисления скалярного произведения двух векторов по их координатам.

    6. Перечислите: виды движений в пространстве и виды симметрии в пространстве.


Задания для зачета

Вариант 1.

      1. Может ли вектор с тремя ненулевыми координатами быть параллелен одной из координатных плоскостей?

      2. Дан вектор hello_html_m12406160.gif{-1;2;0}. Назовите координатный вектор, образующий с вектором hello_html_m12406160.gif тупой угол.

      3. Закончите утверждение: «Если две точки симметричны относительно плоскости Охz , то их ординаты…».

      4. Верно ли, что точки симметричны относительно оси Оz , имеют противоположные аппликаты?

      5. Может ли вектор, коллинеарный одному из координатных векторов, иметь ровно одну ненулевую координату?

      6. При зеркальной симметрии куба АВСDА1В1С1D1 относительно одной из плоскостей его симметрии, ребро АА1 отображается на ребро ВА. Назовите плоскость симметрии.

      7. Закончите утверждение: «Если вектор hello_html_m44add84.gif лежит на прямой а, то при параллельном переносе на вектор hello_html_m44add84.gif прямая а…».

      8. Закончите утверждение: «Если при осевой симметрии плоскость отображается на себя, то она перпендикулярна к оси симметрии либо …».


Вариант 2.

      1. Может ли вектор с тремя ненулевыми координатами быть перпендикулярен к одной из координатных плоскостей?

      2. Дан вектор hello_html_m12406160.gif{-1;2;0}. Назовите координатный вектор, образующий с вектором hello_html_m12406160.gif острый угол.

      3. Закончите утверждение: «Если две точки симметричны относительно оси Оz , то они имеют равные…».

      4. Верно ли, что точки симметричны относительно плоскости Охz , имеют противоположные ординаты?

      5. Может ли вектор, коллинеарный одному из координатных векторов, иметь ровно две ненулевые координаты?

      6. При зеркальной симметрии куба АВСDА1В1С1D1 относительно одной из плоскостей его симметрии, ребро ВВ1 отображается на ребро ВА. Назовите плоскость симметрии.

      7. Закончите утверждение: «Если вектор hello_html_m44add84.gif лежит на прямой, параллельной прямой а, то при параллельном переносе на вектор hello_html_m44add84.gif прямая а…».

      8. Закончите утверждение: «Если при зеркальной симметрии прямая отображается на себя, то она лежит в плоскости симметрии либо …».


Зачет по теме «Цилиндр. Конус. Шар»

Вопросы к зачету:

  1. Дайте определение: радиус-вектора точки. Назовите координаты радиус-вектора точки А(а123).

  2. Сформулируйте: правило вычисления координат вектора по координатам его концов.

  3. Запишите формулу: координат середины отрезка; разложения вектора hello_html_m12406160.gif{х;у;z} по координатным векторам; длины вектора; Расстояния между двумя точками.

  4. Дайте определение: скалярного произведения векторов в пространстве.

  5. Запишите формулу: вычисления скалярного произведения двух векторов по их координатам.

  6. Перечислите: виды движений в пространстве и виды симметрии в пространстве.


Задания для зачета

Вариант 1.

  1. Может ли вектор с тремя ненулевыми координатами быть параллелен одной из координатных плоскостей?

  2. Дан вектор hello_html_m12406160.gif{-1;2;0}. Назовите координатный вектор, образующий с вектором hello_html_m12406160.gif тупой угол.

  3. Закончите утверждение: «Если две точки симметричны относительно плоскости Охz , то их ординаты…».

  4. Верно ли, что точки симметричны относительно оси Оz , имеют противоположные аппликаты?

  5. Может ли вектор, коллинеарный одному из координатных векторов, иметь ровно одну ненулевую координату?

  6. При зеркальной симметрии куба АВСDА1В1С1D1 относительно одной из плоскостей его симметрии, ребро АА1 отображается на ребро ВА. Назовите плоскость симметрии.

  7. Закончите утверждение: «Если вектор hello_html_m44add84.gif лежит на прямой а, то при параллельном переносе на вектор hello_html_m44add84.gif прямая а…».

  8. Закончите утверждение: «Если при осевой симметрии плоскость отображается на себя, то она перпендикулярна к оси симметрии либо …».


Вариант 2.

  1. Может ли вектор с тремя ненулевыми координатами быть перпендикуляре к одной из координатных плоскостей?

  2. Дан вектор hello_html_m12406160.gif{-1;2;0}. Назовите координатный вектор, образующий с вектором hello_html_m12406160.gif острый угол.

  3. Закончите утверждение: «Если две точки симметричны относительно оси Оz , то они имеют равные…».

  4. Верно ли, что точки симметричны относительно плоскости Охz , имеют противоположные ординаты?

  5. Может ли вектор, коллинеарный одному из координатных векторов, иметь ровно две ненулевые координаты?

  6. При зеркальной симметрии куба АВСDА1В1С1D1 относительно одной из плоскостей его симметрии, ребро ВВ1 отображается на ребро ВА. Назовите плоскость симметрии.

  7. Закончите утверждение: «Если вектор hello_html_m44add84.gif лежит на прямой, параллельной прямой а, то при параллельном переносе на вектор hello_html_m44add84.gif прямая а…».

  8. Закончите утверждение: «Если при зеркальной симметрии прямая отображается на себя, то она лежит в плоскости симметрии либо …».


Зачет по теме «Объемы тел»

Вопросы к зачету:

Запишите формулу:

- объема прямоугольного параллелепипеда;

- объема куба;

- объема цилиндра;

- объема конуса;

- объема пирамиды;

- объема шара;

- объема усеченной пирамиды;

- объема усеченного конуса;

- площади сферы.


Задания для зачета

Вариант 1.

  1. Верно ли, что прямая и наклонная призмы с соответственно равными основаниями могут иметь равные объемы?

  2. Могут ли два цилиндра с равными объемами иметь неравные радиусы?

  3. Основание пирамиды SАВСD – ромб АВСD. Определите, какую часть объема данной пирамиды составляет объем пирамиды SАВD?

  4. Определите, цилиндром, конусом или усеченным конусом является данное тело, если сечение, параллельное основанию и делящее высоту пополам, делит данное тело на два тела с равными объемами.

  5. Верно ли, что отношение высот двух пирамид с равными основаниями равно отношению объемов пирамид?

  6. Может ли плоскость, делящая объем шара пополам, делить поверхность шара на части неравной площади?

  7. Два цилиндра с радиусами r1 и r2 и объемами V1 и V2 имеют равные площади осевых сечений. Сравните V1 и V2 , если r1 > r2.


Вариант 2.

  1. Верно ли, что правильная и неправильная пирамиды с равными основаниями могут иметь неравные объемы?

  2. Могут ли два шара с равными объемами иметь неравные радиусы?

  3. Основание пирамиды SАВСD – ромб АВСD. Определите, какую часть объема данной пирамиды составляет объем пирамиды SСОD, где О – точка пересечения диагоналей ромба АВСD.

  4. Определите, цилиндром, конусом или усеченным конусом является данное тело, если сечение, параллельное основанию и делящее объем данного тела пополам, проходит через середину его высоты.

  5. Верно ли, что отношение сторон оснований двух правильных треугольных пирамид с равными высотами равно отношению объемов пирамид?

  6. Может ли плоскость, делящая поверхность шара пополам, делить шар на два тела с неравными объемами ?

  7. Два цилиндра с радиусами r1 и r2 и объемами V1 и V2 имеют равные площади осевых сечений. Сравните r1 и r2 , если V1 < V2 .





Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 02.09.2015
Раздел Математика
Подраздел Тесты
Просмотров7696
Номер материала ДA-026398
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх