Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Контрольно-оценочные средства по математике НПО
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Контрольно-оценочные средства по математике НПО

библиотека
материалов

hello_html_mc47165a.gifhello_html_87992cf.gifhello_html_m41090690.gifhello_html_m2a7690f7.gifhello_html_mc47165a.gifhello_html_m358b45aa.gifhello_html_m630eb450.gifhello_html_m6ec37caa.gifhello_html_m629b6a14.gifhello_html_m629b6a14.gifhello_html_m629b6a14.gifhello_html_m629b6a14.gifhello_html_m595d5853.gifhello_html_m25c4b1d.gifhello_html_m1c176cb8.gifhello_html_m1c176cb8.gifhello_html_m532a3786.gifhello_html_m532a3786.gifhello_html_1218cf9d.gifhello_html_1218cf9d.gifhello_html_8390e0.gifhello_html_8390e0.gifhello_html_d4d7648.gifhello_html_m55ad81e4.gifhello_html_m28d3b97f.gifhello_html_2784db65.gifhello_html_m1c176cb8.gifhello_html_m1c176cb8.gifhello_html_m63f9377.gifhello_html_m63f9377.gifhello_html_4e622e70.gifhello_html_4e622e70.gifhello_html_m5dfeae29.gifhello_html_m5dfeae29.gifhello_html_m1c176cb8.gifhello_html_m1c176cb8.gifhello_html_m41cf52ea.gifhello_html_m41cf52ea.gifhello_html_m41cf52ea.gifhello_html_m41cf52ea.gif





Министерство образования и науки Челябинской области

Государственное Бюджетное образовательное учреждение

ССУЗ (СПО) Каслинский промышленно-гуманитарный техникум








Комплект контрольно-оценочных средств

по учебной дисциплине «Математика»

основной профессиональной образовательной программы (ОПОП)

для профессий НПО

повар-кондитер, сварщик, лаборант-эколог










Н.С..Васильева

преподаватель математики


Согласовано на заседании ЦМК:


_________________Т.Г.Гордеева






Карабаш


2014г


Содержание

  1. Паспорт комплекта контрольно-измерительных материалов.

  2. Результаты освоения учебной дисциплины.

  3. Оценка освоения учебной дисциплины.

3.1. Формы контроля и оценивания элементов учебной дисциплины.

3.2. Типовые задания для оценки освоения учебной дисциплины.

3. 2. 1. Стартовая диагностика подготовки обучающихся по

школьному курсу математики.

3.2.2 Задания для текущего контроля

3.2. 3. Задания для тематического контроля

(контрольные работы).

3. 2.4. Задания для итогового контроля (экзамен).

3.3. Критерии оценивания.

Паспорт комплекта контрольно - оценочных средств дисциплины Математика

Контрольно –оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины Математика.

КОС включают контрольные материалы для проведения текущего контроля и итоговой аттестации в форме экзамена.

КОС разработаны на основании:

  • основной профессиональной образовательной программы по направлению подготовки профессий НПО

  • программы учебной дисциплины Математика.

2.Результаты освоения учебной дисциплины


В результате освоения учебной дисциплины обучающийся должен обладать общими компетенциями, включающими в себя способность:

 ОК 1. Понимать сущность и социальную значимость своей будущей профессии,

проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, определять методы и способы

выполнения профессиональных задач, оценивать их эффективность и

качество.
ОК 3. Решать проблемы, оценивать риски и принимать решения в нестандартных

ситуациях.
ОК 4. Осуществлять поиск, анализ и оценку информации, необходимой для

постановки и решения профессиональных задач, профессионального и

личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии для

совершенствования профессиональной деятельности.

ОК 6. Работать в коллективе и команде, обеспечивать ее сплочение, эффективно

общаться с коллегами, руководством, клиентами.

ОК 7. Ставить цели, мотивировать деятельность подчиненных, организовывать и

контролировать их работу с принятием на себя ответственности за результат

выполнения заданий.

ОК 8. Самостоятельно определять задачи профессионального и личностного

развития, заниматься самообразованием, осознанно планировать

повышение квалификации.

ОК 9. Быть готовым к смене технологий в профессиональной деятельности.
ОК 10. Исполнять воинскую обязанность, в том числе с применением полученных

Профессиональных знаний (для юношей).

Результатом освоения дисциплины является получение (освоение) знаний и умений

Результаты обучения

(освоенные умения, усвоенные знания)

Показатели оценки результата

Умения:

решать линейные и квадратные уравнения и уравнения, сводящиеся к ним;

получение корней линейных и квадратных уравнений и уравнений, сводящихся к ним, обоснование выбора формул для решения квадратных уравнений и неполных квадратных уравнений;

выполнять действия с действительными числами, пользоваться калькулятором для вычислений, находить приближённые вычисления;

выполнение действий с действительными числами, демонстрация умений использования калькулятора для вычислений и нахождения приближённых вычислений;

решать линейные и квадратные неравенства, системы неравенства;

изложение основных этапов решения линейных и квадратных неравенств и их систем;

производить действия с векторами;

формулирование правил сложения и вычитания векторов, демонстрация умений выполнения действий над векторами;

использовать свойства элементарных функций при решении задач и упражнений;

изложение свойств функций и демонстрация понимания их использования при решении задач и упражнений;

выполнять тождественные преобразования со степенными, логарифмическими и тригонометрическими выражениями;

применение тождественных преобразований над степенными, логарифмическими и тригонометрическими выражениями; обоснование выбора формулы или свойства функций для преобразования;

строить графики показательных, логарифмических и тригонометрических функций, выполнять их преобразования;

создание графиков показательных, логарифмических и тригонометрических функций, демонстрация умений выполнения преобразований графиков таких функций;

вычислять производные и первообразные, определённые интегралы, применять определённый интеграл для нахождения площади криволинейной трапеции;

получение производных и первообразных некоторых функций, построение криволинейной трапеции, нахождение её площади с помощью определённого интеграла;

применять свойства прямых и плоскостей в пространстве при решении задач;

обоснование свойств прямых и плоскостей в пространстве при решении задач;

изображать геометрические тела на плоскости и в пространстве, строить их сечения плоскостью;

демонстрация умений построения геометрических тел и их сечений на плоскости и в пространстве;

решать задачи на вычисление площадей поверхностей и объёмов геометрических тел;

определение формулы для вычисления площадей и объёмов геометрических тел, применение их для решения задач;

уметь применять основные положения теории вероятностей и математической статистики в профессиональной деятельности.

выделение основных элементов теории вероятностей и математической статистики, решение практических задач.

Знания:


основные функции, их графики и свойства;

перечисление основных функций, формулирование их свойств, описание процесса построения графиков;

основы дифференциального и интегрального исчислений;

формулирование правил и формул дифференциального и интегрального исчислений;

алгоритмы решения тригонометрических, показательных, логарифмических уравнений и неравенств;

изложение алгоритмов решения тригонометрических, показательных и логарифмических уравнений и неравенств;

основные свойства элементарных функций;

определение основных свойств элементарных функций;

основные понятия векторной алгебры;

формулирование определений и выделение основных понятий векторной алгебры;

основы линейной алгебры;

обоснование основных понятий линейной алгебры;

основные понятия и определения стереометрии;

узнавание геометрических тел, формулирование основных понятий и определений стереометрии;

свойства геометрических тел и поверхностей;

перечисление свойств геометрических тел и их поверхностей;

формулы площадей поверхностей и объёмов;

выделение формул площадей поверхностей и объёмов;

основные понятия комбинаторики; статистики, теории вероятностей.

изложение основных понятий комбинаторики, статистики и теории вероятностей.


3.Оценка освоения учебной дисциплины

3.1.Формы контроля и оценивания элементов учебной дисциплины

Элемент учебной дисциплины

Формы контроля и оценивания

Текущий контроль

Тематический контроль

Итоговый контроль

Раздел 1.

Действительные числа.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 2.

Функции и последовательности.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 3.

Показательная, логарифмическая и степенная функции.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 4.

Тригонометрические функции.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 5.

Прямые и плоскости в пространстве.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 6.

Векторы и координаты.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 7.

Производная и её приложения.

Опрос, тестирование,

самостоятельная работа

Контрольная работа



Раздел 8.

Интеграл и его применения.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 9.

Геометрические тела и площади их поверхностей.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 10.

Объёмы геометрических тел.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Раздел 11.

Комбинаторика, статистика и теория вероятностей.

Опрос, тестирование, самостоятельная работа

Контрольная работа


Итог



Экзамен


Типы заданий для текущего контроля и критерии оценки


Предметом оценки освоения дисциплины являются умения, знания, общие компетенции, способность применять их в практической деятельности и повседневной жизни.


Тип (вид) задания

Проверяемые знания и умения

Критерии оценки

1

Тесты

Знание основ

математики

«5» - 100 – 90% правильных ответов

«4» - 89 - 80% правильных ответов

«3» - 79 – 70% правильных ответов

«2» - 69% и менее правильных

ответов

2

Устные ответы

Знание основ

математики

Устные ответы на вопросы должны соответствовать критериям оценивания устных ответов.

3

Контрольная (самостоятельная) работа

Знание основ математики в соответствии с пройденной темой и умения применения знаний на практике

«5» - 100 – 90% правильных ответов

«4» - 89 - 80% правильных ответов

«3» - 79 – 70% правильных ответов

«2» - 69% и менее правильных

ответов

4

Составление конспектов, рефератов, творческих работ.

Умение ориентироваться в информационном пространстве, составлять конспект.

Знание правил оформления рефератов, творческих работ.

Соответствие содержания работы, заявленной теме, правилам оформления работы.


Практические работы

Умение применять полученные знания на практике.

«5» - 100 – 90% правильных ответов

«4» - 89 - 80% правильных ответов

«3» - 79 – 70% правильных ответов

«2» - 69% и менее правильных

ответов


3.2.Типовые задания для оценки усвоения учебной дисциплины.

3. 2. 1. Стартовая диагностика подготовки обучающихся по школьному курсу математики

Входная контрольная работа проводится с целью проверки освоения обучающимися содержания образования по математике. Форма работы обеспечивает полноту проверки за счет включения заданий, составленных на материале основных разделов предмета «Математика» в школе: уравнения, неравенства, степени, действия с действительными числами, проценты, графики элементарных функций, теорема Пифагора. Контрольная работа включает задания двух уровней: базового и повышенного, которые представлены в виде тестов, что позволяет контролировать результат.

При выполнении заданий базового уровня (часть А и В) обучающиеся должны продемонстрировать определенную системность знании, умение пользоваться математическими терминами, распознавать задания. Эти задания составляют не менее 70% всей работы.

Задание части С направлено на проверку владения материалом на повышенном уровне. Также в работе проверяются вычислительные навыки.

Для получения положительного результата обучающемуся достаточно выполнить задания базового уровня.

Время на выполнение работы 45 минут.

В результате выполнения контрольной работы обучающиеся должны показать:

Результаты обучения

(освоенные умения, усвоенные знания)

Показатели оценки результата

Умения:

решать полные квадратные уравнения;

применяет формулы дискриминанта и корней квадратного уравнения для решения уравнений;

решать линейные неравенства;

раскрывает скобки, приводит подобные слагаемые, использует свойства неравенств;

выполнять вычисления с действительными числами;

применяет правила выполнения арифметических действий над действительными числами в рамках программных требований;

выполнять действия со степенями и находить значения выражения при заданном значении переменной;

владеет свойствами степеней и находит значение выражения, содержащего степень;

строить графики функций;

строит графики линейных функций;

решать геометрические задачи с использованием теоремы Пифагора;

решает задачи с использованием

Теоремы Пифагора;

находить проценты от числа;

находит проценты от числа и решает задачи на проценты;

упрощать выражения, содержащие дроби.

применяет формулы сокращённого умножения для упрощения алгебраических выражений;

Знания:


формулы дискриминанта, корней квадратного уравнения;

воспроизводит формулы дискриминанта и корней квадратного уравнения;

правила раскрытия скобок; определение подобных слагаемых, свойства неравенств;

формулирует правила раскрытия скобок, определение подобных слагаемых, перечисляет свойства неравенств;

арифметические действия на множестве действительных чисел;

перечисляет последовательность действий в выражениях с действительными числами; формулирует правила действий на множестве действительных чисел;

определение степени с действительным показателем, свойства степени;

формулирует определение и перечисляет свойства степени;

свойства линейной функции и её график;

определяет графики линейных функций и описывает их свойства;

теорема Пифагора;

обосновывает теорему Пифагора;

формулы сокращённого умножения.

выделяет формулы сокращённого умножения, иллюстрирует их применение на практике.


Критерии оценки контрольной работы


Задания

Баллы

Примечание

А1 – А5

5

Каждый правильный ответ 1 балл

В6, В7

4

Каждый правильный ответ 2 балла

С8

3

Каждый правильный ответ 3 балла


Максимальный балл за работу в целом – 12 баллов.

За правильное выполнение любого задания уровня 1 обучающийся получает один балл. В заданиях с выбором ответа, с кратким ответом или на установление соответствия, обучающийся получает один балл, соответствующий данному заданию, если указан номер верного ответа (в заданиях с выбором ответа), или вписан верный ответ (в заданиях с кратким ответом), или правильно соотнесены объекты двух множеств и записана соответствующая последовательность цифр (в заданиях на установление соответствия). При выполнении таких заданий, где необходимо привести краткое решение, за неполное решение задания (вычислительная ошибка, описка) можно выставить 0,5 балла. Если обучающийся приводит неверное решение, неверный ответ или не приводит никакого ответа он получает 0 баллов.

При выполнении любого задания уровня 2 или 3 используются следующие критерии оценки заданий:

Баллы

Критерии оценки выполненного задания

3

Найден правильный ход решения, все его шаги выполнены верно и получен правильный ответ.

2

Приведено верное решение, но допущена вычислительная ошибка или описка, при этом может быть получен неверный ответ

1

Решение начато логически верно, но допущена ошибка, либо решение не доведено до конца, при этом ответ неверный или отсутствует.

0

Неверное решение, неверный ответ или отсутствие решения.


Шкала перевода баллов в отметки


Отметка

Число баллов, необходимое для получения отметки

« 5» (отлично)

11 - 12

« 4» (хорошо)

9 - 10

« 3» (удовлетворительно)

7 - 8

« 2 « (неудовлетворительно)

менее 7



1 вариант


А1. Решить уравнение х (х - 5) = - 4

а) 4 и 1; б) 4,5; в) 4; г) – 4 и 1; д) 1.


А2. Решите неравенство 6х – 3 < - 17 – (- х – 5)

а) х < 4 ; б) х < - 4 ; в) х > - 4; г) х > 4; д) х < - 1,8.

А3. Вычислить hello_html_44ac7ec6.gif.

а) hello_html_1a8fa9c4.gif; б) 3,9; в) hello_html_m2306c952.gif ; г) 4; д) hello_html_799dabd1.gif.

А4.Представить в виде степени и найти значение выражения hello_html_m5f3294e1.gif при а = 6.

а) 6; б) hello_html_md2b5ce2.gif; в) 4; г) – 6; д) hello_html_44d6a6b3.gif.


А5. Построить график функции у = 2х + 1.


В6. В прямоугольном треугольнике гипотенуза равна 10 см, а один из катетов

6 см. Найти второй катет.

а) 4 см; б) 16 см; в) 8 см; г) √136 см; д) 10 см.

В7. Банк выплачивает ежегодно 8% от суммы вклада. Какой станет сумма через

год, если первоначальный вклад составлял 7600 рублей?

а) 8208 руб.; б) 608 руб.; в) 8200 руб.; г) 7600 руб.; д) 8000 руб.

С8.Упростить выражение hello_html_47754a13.gif.


2 вариант


А1. Решить уравнение х (х - 4) = - 3

а) 3 и 1; б) 4,5; в) 3; г) – 3 и 1; д) 1.


А2. Решите неравенство 5 · (х + 4) < 2 · (4х – 5)

а) х < -10 ; б) х < - 4 ; в) х > - 10; г) х > 10; д) х < - 1,8.

А3. Вычислить hello_html_ma3f07bf.gif.

а) hello_html_e6c2efd.gif; б) 1; в) hello_html_m2306c952.gif; г) - 1; д) hello_html_799dabd1.gif.

А4.Представить в виде степени и найти значение выражения hello_html_30e6aaee.gif при с = 4.

а) 16; б) hello_html_m4484b840.gif; в) 4; г) – 16; д) hello_html_2a751da.gif.


А5. Построить график функции у = - 2х + 1.


В6. В прямоугольном треугольнике гипотенуза равна 10 см, а один из катетов

8 см. Найти второй катет.

а) 4 см; б) 6 см; в) 8 см; г) √136 см; д) 10 см.

В7. Банк выплачивает ежегодно 8% от суммы вклада. Какой станет сумма через

год, если первоначальный вклад составлял 8600 рублей?

а) 8208 руб.; б) 688 руб.; в) 9288 руб.; г) 8600 руб.; д) 8000 руб.

С8.Упростить выражение hello_html_m64ed4a20.gif.


Таблица правильных ответов


Задания

А1

А2

А3

А4

А5

В6

В7

С8

1 вариант

а

д

в

д


в

а

hello_html_6d24a109.gif

2 вариант

а

г

б

д


б

в

hello_html_m9777c81.gif



3. 2. 2. Задания для текущего контроля

3. 2. 3. Задания для тематического контроля (контрольные работы)

Критерии оценки контрольной работы

Основные требования к выполнению заданий контрольной работы:

ход решения математически грамотный и понятный;

представленный ответ верный;

- метод и форма описания решения задачи могут быть произвольными;

выполнение каждого из заданий оценивается в баллах.

За правильное выполнение любого задания уровня 1 обучающийся получает один балл. В заданиях с выбором ответа, с кратким ответом или на установление соответствия, обучающийся получает один балл, соответствующий данному заданию, если указан номер верного ответа (в заданиях с выбором ответа), или вписан верный ответ (в заданиях с кратким ответом), или правильно соотнесены объекты двух множеств и записана соответствующая последовательность цифр (в заданиях на установление соответствия). При выполнении таких заданий, где необходимо привести краткое решение, за неполное решение задания (вычислительная ошибка, описка) выставляется 0,5 балла. Если обучающийся приводит неверное решение, неверный ответ или не приводит никакого ответа, он получает 0 баллов.

Контрольная работа № 1

Вычисление значений выражений. Уравнения и неравенства.


Цель: проверка знаний и практических умений обучающихся.


1 вариант

А1. Вычислите: hello_html_66bb13e8.gif.

А2. Решить уравнения:

1) hello_html_m4962ed0.gif; 2) hello_html_m346c6d18.gif; 3) hello_html_m14b3d6c5.gif.

В1. Решить неравенства:

1) hello_html_m56e0d0c0.gif; 2) hello_html_m130396b9.gif.

В2. Решить систему уравнений: hello_html_m113394c5.gif.


С. Решите уравнения:

1) hello_html_3ae5828b.gif; 2) hello_html_m440ae12d.gif.

2 вариант

А1. Вычислите: hello_html_5cd9bd82.gif.

А2. Решить уравнения:

1) hello_html_7e29cfa2.gif; 2) -hello_html_m346c6d18.gif; 3) hello_html_3831a197.gif;

В1. Решить неравенства:

1) 2(1 – х) ≥ 5х – (3х + 2); 2) hello_html_m196297f0.gif.

В2. Решить систему уравнений: hello_html_6c8d94a1.gif.

С. Решите уравнения:

1) hello_html_5be92fe6.gif; 2) hello_html_796588da.gif.



1 Вариант

2 Вариант

А1

1

1

А2

1) х1,2 = hello_html_me8b4f87.gif; 2)0; hello_html_m5ab5b66e.gif; 3) 1,6.

1) 2; hello_html_m704039b8.gif; 2) 0; hello_html_m518352c3.gif; 3) 2.

В1

  1. х hello_html_m4e28f490.gif; 2) hello_html_42c1eb21.gif.

  1. х hello_html_m50f240d6.gif; 2) hello_html_m2b8d4d0e.gif

В2

(5; 1)

(0; 3)

С

  1. hello_html_m5ab5b66e.gif; 2) 2.

  1. hello_html_677526e5.gif; 2) нет корней.


Контрольная работа № 2

Свойства функций и их графики.

Цель: проверка знаний и практических умений обучающихся.


1 вариант

А1. Какой из графиков, изображенных на рисунках   1) – 4)   задает функции

 график функцииграфик функции

А)  1).                Б)  2).                  В)  3).                  Г)  4).

А2. Найдите область определения функции   hello_html_198cd323.gif
  А)  x > 2;           Б) x < 2;           В)  x ≥
hello_html_51bbccb5.gif; Г)   x ≤ 2.

А3. По графику функции y = f(x) укажите

а) область определения функции;

б) нули функции;

в) промежутки постоянного знака функции;

г) точки максимума и минимума функции;

д) промежутки монотонности;

е) наибольшее и наименьшее значения

функции;

ж) область значений функции.

А4.Среди заданных функций укажите чётные .

1)  у = 2х2;       2)  у =hello_html_64bad77b.gif;       3)  у = 5х;  

А)  1) и 3);       Б)  1);              В)  3).

hello_html_m7e3dac83.gif

В. Найдите область определения функции   у = hello_html_m47cec758.gif.

С. Постройте график функции y x2  4x +3  и укажите ее свойства.

2 вариант

А1. Какой из графиков, изображенных на рисунках 1) – 4), задает функцию? http://e-ypok.ru/files/image/GIA/mathematics/gia_mathematics_9_2010_016.jpghttp://e-ypok.ru/files/image/GIA/mathematics/gia_mathematics_9_2010_016.jpg

А) 1).                  Б)  2).                      В)  3).                       Г)  4).

А2. Найдите область определения функции  hello_html_1856b733.gif

А)  x > 3;              Б)  x < 3;                 В)  x ≥ 3;               Г)  x < 1/3.

А3. По графику функции y = f(x) укажите:

а) область определения функции;

б) нули функции;

в) промежутки постоянного знака

функции;

г) точки максимума и минимума

функции;

д) промежутки монотонности;

е) наибольшее и наименьшее

значения функции;

ж) область значений функции.

hello_html_b8a3ac0.gif

А4. Среди заданных функций укажите нечетные.

1)  у = 2х2;            2)  у = hello_html_m31739396.gif ; 3)  у = 5х.              

А)  1) и 3);            Б)  2) ;              В)  2) и 3);              Г)  3) .

Ответы к контрольной работе



1 Вариант

2 Вариант

А1

В) 3

А)1

А2

В) x ≥ hello_html_51bbccb5.gif

Б)  x < 3

А3

а) hello_html_m58d2bcbc.gif; б)-2; 4; в) у > 0 при hello_html_7a50ebbe.gif; у < 0 при hello_html_4246caaf.gif;

г)хmax = 0,2; xmin = 1; д) ф hello_html_29d5e70b.gif при hello_html_m259d2268.gif; ф hello_html_m4a1dadbd.gifпри hello_html_e0d7cf4.gif;

е) унаиб = 6; у наим = - 1;

ж) hello_html_5dc038a0.gif;

а) hello_html_6a50a1db.gif; б)-2; 1; в) у > 0 при hello_html_m336b1bc3.gif; у < 0 при hello_html_mdd6dba2.gif;

г)хmax = 2; xmin = - 1; д) ф hello_html_29d5e70b.gif при hello_html_8b1c28.gif; ф hello_html_m4a1dadbd.gifпри hello_html_m276cf494.gif;

е) унаиб = 2; у наим = - 3;

ж) hello_html_m4a9c2f73.gif;

А4

Б) 1

В)  2) и 3)

Контрольная работа № 3

Показательные уравнения и неравенства.


Цель: проверка знаний и практических умений обучающихся.


1 вариант


Часть А

А1. Укажите промежуток, содержащий корень уравнения hello_html_461d9df6.gif

1) hello_html_m2cd79242.gif;

2) hello_html_42863861.gif;

3) ( 2; 3];

4) hello_html_5035954a.gif.


А2. Решите неравенство hello_html_69d51df6.gif

1) hello_html_16c3cb01.gif;

2) решений нет;

3) hello_html_75024569.gif;

4) hello_html_7b5b1352.gif.


А3. Решите неравенство hello_html_mefc6ed0.gif

1) hello_html_m63e80e2f.gif;

2) hello_html_m284dcd4d.gif;

3) hello_html_m2a688496.gif;

4) hello_html_66d596a2.gif.


А4. Решите уравнение hello_html_m53d4ecad.gif hello_html_132eef89.gif

1) - 1 ;

2) 7;

3) 1;

4) 35 .


2 вариант


Часть А.

А1. Укажите промежуток, содержащий корень уравнения hello_html_m67fe78f3.gif

1) hello_html_m2cd79242.gif;

2) hello_html_42863861.gif;

3) hello_html_39200222.gif;

4) hello_html_5035954a.gif.


А2. Решите неравенство hello_html_303a6fec.gif< - 0,04

1) hello_html_16c3cb01.gif;

2) решений нет;

3) hello_html_75024569.gif;

4) hello_html_7b5b1352.gif.


А3. Решите неравенство hello_html_m5732bc9.gif

1) hello_html_m35b8aa77.gif;

2) hello_html_d704eb1.gif;

3) hello_html_m7ea31cad.gif;

4) hello_html_m4f85a00d.gif.


А4. Решите уравнение hello_html_m517497c9.gif


1) 0 ;

2) 3 ;

3) 12;

4) - 3 .



Критерии оценки контрольной работы


Задания

Баллы

Примечание

А1 – А4

4

Каждый правильный ответ 1 балл



Ответы к контрольной работе



1 Вариант

2 Вариант

А1

х = 3; 3) (2; 3];

х = 2; 3) [2; 3);

А2

1)hello_html_16c3cb01.gif;

2) решений нет;

А3

х hello_html_3f1f8293.gif 7; 2) hello_html_m284dcd4d.gif;

х hello_html_3f1f8293.gif 5; 3) hello_html_m14350a96.gif;

А4

1) х = - 1;

2) х = 3;



Контрольная работа № 4

Логарифмические уравнения и неравенства.

Цель: проверка знаний и практических умений обучающихся.

1 вариант

А1. Упростить выражение и найти х: lg x = lg 8 + 2 lg 5 – lg 10 - lg 2

  1. 10; 2) -1; 3) -10; 4) 0.

А2.Найдите корень уравнения log 2(3x +1) = 3

1) 11; 2) 1; 3) -10; 4) hello_html_m7f68d401.gif.

А3. Укажите промежуток, которому принадлежит корень уравнения

log4 (4 – х ) + log4 2 = 1

1) ( -3; -1 ); 2) ( 0; 2 ); 3) [ 2; 3 ]; 4) [ 4; 8 ].

А4. Найдите сумму корней уравнения hello_html_5939312.gif

1) - 13; 2) - 5; 3) 5; 4) 9.

А5. Решите неравенство log3( 4 – 2х ) hello_html_m533e9f7f.gif1

2 вариант

А1. Упростить выражение и найти х: lg x = lg 12 - lg 3 + 2lg7 - lg14

  1. 14; 2) -1; 3) -10; 4) 0.

А2.Найдите корень уравнения log 5(2x - 4) = 2

1) 11; 2) 14,5; 3) -10 ; 4) hello_html_m7f68d401.gif.

А3. Укажите промежуток, которому принадлежит корень уравнения

lоg0,4 (5 – 2х ) – lоg0,4 2 = 1

1) ( -∞; -2 ); 2) [ -2; 1 ]; 3) [ 1; 2 ]; 4) ( 2; +∞).

А4. Найдите сумму корней уравнения lg (4x – 3 ) = 2 lg x

1) - 2; 2) 4; 3) -4; 4) 2.

А5. Решите неравенство log8 (5 – 2х) > 1

1) (-∞; -1,5); 2) (-10; 2,5); 3) (2,5; + ∞); 4) ( -10; + ∞).

Критерии оценки контрольной работы


Задания

Баллы

Примечание

А1 – А5

5

Каждый правильный ответ 1 балл


Ответы к контрольной работе



1 Вариант

2 Вариант

А1

1) 10

1) 14

А2

4) hello_html_m7de9b36.gif

2) 14,5

А3

х = 2; [2;3] (3)

х = 2,1; (2; + ∞) (4)

А4

х1 = 4; х2 = 5; 4 + 5 = 9; (4)

х1 = 1; х2 = 3; 1 + 3 = 4; (2)

А5

х hello_html_358b59f9.gif ( - ∞; 0,5] (1)

х hello_html_358b59f9.gif ( - ∞; - 1,5) (1)






Контрольная работа № 5

Тригонометрические преобразования выражений.

Цель: проверка знаний и практических умений обучающихся.

1 вариант

А1. Вычислите: sin 30˚

hello_html_2ceee5d6.gif1)0,5; 2) 1; 3)hello_html_m64fee39d.gif; 4)hello_html_2c97ca0a.gif.

А3.Найдите значение выражения: 2sin 30˚+6 cos 60˚ - 3ctg 30˚ + 9 tg 30˚

hello_html_m2973918d.gif1)4; 2) – 4; 3)6; 4)

А 4. Упростите, используя формулы приведения: cos(π-α)∙cos(2π-α)+cos²α

1) 2cos²α; 2)1; 3)0; 4)2sin²α.

А5. Постройте график функции y = 3sinx и укажите область определения

и область значений функции.

А6. Определите знак выражения: sin110˚·cos 110˚

1) + ; 2)- ; 3) 0; 4) нет верного ответа.

В. По заданному значению тригонометрической функции, найдите значение

ctg α, если sin α=0,8 и hello_html_m2c9b628b.gif< α < π.

С. Докажите тождество:

hello_html_m7c97cab5.gif= tg2α

2 вариант

А1. Вычислите: cos 30˚

hello_html_m2b5eebec.gif1)0,5; 2) 1; 3)hello_html_m64fee39d.gif; 4)hello_html_2c97ca0a.gif.


А3.Найдите значение выражения: 2 cos 30˚- 6 sin 30˚ - ctg 30˚ + 9 tg 45˚

hello_html_m2973918d.gif1)4; 2) – 4; 3)6; 4) .

А 4. Упростите, используя формулы приведения: sin (π-α)∙cos(hello_html_m2c9b628b.gif - α)+cos²α

1) 2cos²α; 2)1; 3)0; 4)2sin²α.

А5. Постройте график функции y = 1 + cosx и укажите область определения и о

множество значений функции.

А6. Определите знак выражения: sin100˚· cos 100˚.

1)+; 2) -; 3) 0; 4)нет верного ответа.

В. По заданному значению тригонометрической функции, найдите значение tg α,

если cos α= 0,8 и hello_html_m2c9b628b.gif< α < π

С. Докажите тождество:

hello_html_m2a16e4af.gif= - tg2α

Ответы к контрольной работе



1 Вариант

2 Вариант

А1

1) 0,5

3) hello_html_m3d360b8f.gif

А2

рис 4

рис 2

А3

1) 4

3) 6

А4

3) 0

2) 1

А5

х hello_html_358b59f9.gif R; у hello_html_358b59f9.gif [ - 3; 3]

х hello_html_358b59f9.gif R; у hello_html_358b59f9.gif [ 0; 2]

А6

2) -

2) -

В

hello_html_mcc22ee4.gif

hello_html_45c58aeb.gif

С

Используем формулы двойного угла

Используем формулы двойного угла


Контрольная работа № 6

Тригонометрические уравнения и неравенства.

Цель: проверка знаний и практических умений обучающихся.

1 вариант

А1. arccos a имеет смысл, если:

а) аhello_html_10f296dd.gif[0;hello_html_m41628872.gif]; б) аhello_html_10f296dd.gif[-1;1]; в) аhello_html_10f296dd.gif[-hello_html_3689c29a.gif;hello_html_3689c29a.gif]; г) аhello_html_10f296dd.gif(-1;1).

А2. Решением уравнения cos х = 0 являются:

а) х =hello_html_3689c29a.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; б) x =hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; в) x =hello_html_3689c29a.gif+hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; г) x =hello_html_m41628872.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ.

А3. Вычислите: arcsin 0 + arctg hello_html_f838b44.gif

а)0,5; б) 1; в)hello_html_m5d1e3167.gif; г)hello_html_2c97ca0a.gif.

А 4. Уравнение 2tg х = -3:

а) имеет одно решение; б) не имеет решения; в) имеет два решения;

г) имеет бесконечное множество решений.

А5. Уравнение sin х =hello_html_749f3b7b.gif имеет решения:

а) x =(-1)nhello_html_3a1b334f.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; б) x =(-1)nhello_html_m33b3e25f.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; в) x =(-1)n hello_html_m33b3e25f.gif+hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ;

г) x =(-1)nhello_html_m190063f.gif+hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ.

В. Решите уравнения:

а) cos (hello_html_213ddc03.gif) = hello_html_m6d9b05be.gif; б) sin2 x – 3 cos x – 3 = 0; в) 1 + sin x = 0.

С. Решите неравенства:

а) sin x hello_html_183a0696.gif; б) hello_html_m3bcc8089.gif


2 вариант

А1. arcsin a имеет смысл, если:

а) аhello_html_10f296dd.gif[0;hello_html_m41628872.gif]; б) аhello_html_10f296dd.gif[-1;1]; в) аhello_html_10f296dd.gif[-hello_html_3689c29a.gif;hello_html_3689c29a.gif]; г) аhello_html_10f296dd.gif(-1;1).

А2. Решением уравнения cos х = - 1 являются:

а) х =hello_html_3689c29a.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; б) x =hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; в) x =hello_html_3689c29a.gif+hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; г) x =hello_html_m41628872.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ.

А3. Вычислите: arcos 0 + arctg 1

а)0,5; б) 1; в)hello_html_m5d1e3167.gif; г)hello_html_7696778f.gif.

А 4. Уравнение ctg х - 4 = 0:

а) имеет одно решение; б) не имеет решения; в) имеет два решения;

г) имеет бесконечное множество решений.

А5. Уравнение sin x =hello_html_m5e2dacd5.gif имеет решения:

а) x =(-1)nhello_html_3a1b334f.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; б) x =(-1)nhello_html_m33b3e25f.gif+2hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ; в) x =(-1)n hello_html_m33b3e25f.gif+hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ;

г) x =(-1)nhello_html_m190063f.gif+hello_html_m41628872.gifn, nhello_html_10f296dd.gifZ.

В. Решите уравнения:

а) sin (hello_html_m122252e2.gif) = hello_html_183a0696.gif; б) cos2 x – 4 sin x – 1 = 0; в) 1 + sin x = 0.

С. Решите неравенства:

а) cos x hello_html_30f07b9f.gif; б) hello_html_1ab32918.gif.



Ответы к контрольной работе



1 Вариант

2 Вариант

А1

б)

б)

А2

в)

г)

А3

в)

г)

А4

г)

г)

А5

в)

в)

В

а) x =hello_html_m5de6dac9.gifhello_html_m33b3e25f.gif+hello_html_75c146e9.gif + 4πn, nhello_html_10f296dd.gifZ;

б) х = π + 2πn, nhello_html_10f296dd.gifZ; в) x =hello_html_m2cc1cec3.gif+ 2πn, nhello_html_10f296dd.gifZ.

а) x =( - 1)nhello_html_m33b3e25f.gif - hello_html_m3a54e944.gif + 2πn, nhello_html_10f296dd.gifZ;

б) х = 0 + πn,nhello_html_10f296dd.gifZ; в) x =hello_html_m2cc1cec3.gif+ 2πn, nhello_html_10f296dd.gifZ

С

а)hello_html_m2e391202.gif, nhello_html_10f296dd.gifZ;

б) hello_html_4eeb5f7e.gif, nhello_html_10f296dd.gifZ.

а)hello_html_45a1fbba.gif, nhello_html_10f296dd.gifZ;

б) hello_html_m49652086.gif, nhello_html_10f296dd.gifZ.


Контрольная работа № 7

Параллельность в пространстве.


Цель: проверка знаний и практических умений обучающихся.

1 вариант


Уровень А.

1.Написать обозначение прямых.

2.Написать обозначение отрезков.

3.Написать обозначение углов.

4.Написать обозначение плоскостей.

5.Сколько плоскостей можно провести через одну прямую?

6.Сколько плоскостей можно провести через две параллельные прямые?

7.Сколько плоскостей можно провести через две пересекающиеся прямые?

8. Сколько плоскостей можно провести через две скрещивающиеся прямые?

9. Прямые а и в параллельны прямой с. Как расположены между собой прямые а и в?

10.Две плоскости параллельны одной прямой. Параллельны ли они между собой?

11.Плоскость α β, α γ = а, β γ = в. Что можно сказать о прямых а и в?

12.У треугольника основание равно 18 см. Чему равна средняя линия треугольника?

13.Стороны основания трапеции равны 12см и 7см. Чему равна средняя линия трапеции?

14.У данного четырехугольника противоположные стороны равны и параллельны.

Диагонали равны 15см и 13 см. Является ли четырехугольник прямоугольником?



Уровень В.


15. Точки К, М, Р, Т не лежат в одной плоскости. Могут ли прямые КМ и РТ пересекаться?

Ответ обосновать.

16. Схематично изобразить плоскость hello_html_25f31b0.gif в виде параллелограмма. Вне ее построить отрезок AB,

не параллельный ей. Через концы отрезка AB и его середину М провести параллельные прямые,

пересекающие плоскость hello_html_25f31b0.gif в точках А1, В1 и М1. Найти длину отрезка hello_html_m43d85a2.gif, если АА1= 13 м,

ВВ1= 7 м.


Уровень С.


17. Даны две параллельные плоскости и не лежащая между ними точка Р. Две прямые,

проходящие через точку Р пересекают ближнюю к точке Р плоскость в точках А1 и А2,

а дальнюю в точках В1 и В2 соответственно. Найдите длину отрезка В1В2 , если А1А2 = 6 см

и РА1 : А1В1 = 3 : 2.


2 вариант


Уровень А.

1.Написать обозначение плоскостей.

2.Написать обозначение прямых.

3.Написать обозначение углов.

4.Назовите основные фигуры в пространстве.

5.Сколько плоскостей можно провести через три точки?

6.Могут ли прямая и плоскость иметь две общие точки?

7.Сколько плоскостей можно провести через прямую и не лежащую на ней точку?

8. Сколько может быть общих точек у прямой и плоскости?

9. Всегда ли через две параллельные прямые можно провести плоскость?

10.Верно ли, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна

другой плоскости??

11.Плоскость α β, прямая m лежит в плоскости α. Верно ли, что прямая m параллельна

плоскости β?

12.У треугольника основание равно 10 см. Чему равна средняя линия треугольника?

13.Стороны основания трапеции равны 13см и 4см. Чему равна средняя линия трапеции?

14.Верно ли, что если две стороны треугольника параллельны плоскости α, то и третья сторона

треугольника параллельна плоскости α?


Уровень В.


15. Прямые EN и KM не лежат в одной плоскости. Могут ли прямые EM и NK пересекаться?

Ответ обосновать.

16. Схематично изобразить плоскость hello_html_25f31b0.gif в виде параллелограмма. Вне ее построить отрезок AB,

не параллельный ей. Через концы отрезка AB и его середину М провести параллельные прямые,

пересекающие плоскость hello_html_25f31b0.gif в точках А1, В1 и М1. Найти длину отрезка hello_html_m43d85a2.gif, если АА1= 3 м,

ВВ1= 17 м.

Уровень С.


17. Даны две параллельные плоскости и не лежащая между ними точка Р. Две прямые,

проходящие через точку Р пересекают ближнюю к точке Р плоскость в точках А1 и А2,

а дальнюю в точках В1 и В2 соответственно. Найдите длину отрезка В1В2 , если А1А2 = 10 см

и РА1 : А1В1 = 2 : 3.

Ответы к контрольной работе



1 Вариант

2 Вариант

1

АВ, a,b

α, β, (АВС),..

2

АВ, CD,..

АВ, a,b

3

hello_html_8c877bf.gifАВС, hello_html_8c877bf.gifО, α, 1,

hello_html_8c877bf.gifАВС, hello_html_8c877bf.gifО, α, 1,

4

α, β, (АВС),..

точка, прямая, плоскость

5

нисколько

одну

6

одну

нет

7

одну

одну

8

ни одной

одну, много, ни одной

9

параллельно

да

10

и да, и нет

нет

11

а || b


да

12

9 см

5 см

13

9, 5 см

8,5 см

14

нет

да

15

КМ скрещивается с РТ

ЕМ скрещивается с NK

16

10 см

10 см

17

10 см

25 см




Контрольная работа № 8

Перпендикуляр и наклонная. Свойства перпендикулярности прямой и плоскости.


Цель: проверка знаний и практических умений обучающихся.


1 вариант (Уровень А.)

Ответь на предложенные вопросы. В каждом ответе обоснуй свою точку зрения.

1. Могут ли скрещивающиеся прямые быть перпендикулярными?

2. Какие между собой две прямые перпендикулярные к одной плоскости?

3. Могут ли быть ┴ к одной плоскости две стороны одного треугольника?

4. Прямая ┴ к одной из двух пересекающихся плоскостей, может ли она быть ┴ к другой

плоскости?

5. Если две плоскости ┴ к одной прямой, каковы они между собой?

6. Сколько наклонных можно провести из одной точки к плоскости?

7. Может ли угол между прямой и плоскостью быть равен 70°?

Уровень В.

Решите задачи.

8. Перекладина длиной 5 м лежит своими концами на двух вертикальных столбах высотой 3 м

и 6 м. Каково расстояние между основаниями столбов?

9. Из точки к плоскости проведены две наклонные, равные 5см и 8 см.

Проекция одной из них на 3 см больше другой. Найдите проекции наклонных.


Уровень С.

10. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4см. Найдите расстояние от точки M до плоскости ABC, если AB = 6см.

а) 4см;

М б) 8см;

в) 6см;

А О В г) 2см.

С

2 вариант

Уровень А.

Ответь на предложенные вопросы. В каждом ответе обоснуй свою точку зрения.


1. Как расположены друг к другу рёбра, выходящие из одной вершины куба?

2. Если одна из двух параллельных прямых перпендикулярна к плоскости, будет ли вторая прямая,

тоже перпендикулярна к этой плоскости?

3. Могут ли быть ┴ к одной плоскости две стороны трапеции?

4. Что называют расстоянием от точки до плоскости?

5. Сколько перпендикуляров можно провести из одной точки к плоскости?

6. Может ли перпендикуляр быть длиннее наклонной , проведённой из этой же точки?

7. Может ли угол между прямой и плоскостью быть равен 120°?

Уровень В.

Решите задачи.

8. Какой длины нужно взять перекладину, чтобы её можно было положить концами на две

вертикальные опоры высотой 4 м и 8 м, поставленные на расстоянии 3 м одна от другой?


9. Из точки к плоскости проведены две наклонные, одна из которых на 6 см длиннее другой

Проекции наклонных равны 17 см и 7 см. Найдите длины наклонных.

Уровень С.

10. Расстояние от точки К до каждой из вершин квадрата ABCD равно 5см. Найдите расстояние от точки K до плоскости ABC, если AB =3hello_html_m768c6ae.gifсм.

К а) 4 см;

А В б) 4hello_html_m768c6ae.gifсм;

Н в) 2см;

D C г) hello_html_2f3d97ef.gifсм.

Критерии оценки контрольной работы


Ответы к контрольной работе



1 Вариант

2 Вариант

1

да

hello_html_36b9196e.gif

2

||

да

3

нет

да

4

нет

длина перпендикуляра

5

||

одну

6

множество

нет

7

да

нет

8

4 м

5 м

9

5 см и 8 см

17 см и 23 см

10

г) 2 см

а) 4 см


Контрольная работа № 9

Координаты в пространстве. Действия над векторами.


Цель: проверка знаний и практических умений обучающихся.


1 вариант (Уровень А).

Заполните пропуски.

1. Вектором на плоскости называется …

2. Вектор изображается …

3. Модулем вектора называется …

4. Два вектора в пространстве называются противоположно направленными, если …

5. При умножении вектора на число …

6. Два вектора считаются равными, если …

7.Нулевой вектор коллинеарен …….. вектору.

Уровень В.


8. Найдите координаты вектора , если А(5;-1;3) и В(2;-2;4).

9.Даны векторы и . Найдите.

10.Даны точки А ( 0; 0; 2) и В ( 1; 1; -2). На оси ОУ найдите точку М ( 0; у; 0), равноудалённую от

точек А и В. Точка О – начало координат.

Уровень С.


11. Являются ли векторы и , если А(5;-1;3) ,В(2;-2;4),С(3;1; -2),Е(6;1;1)?


Уровень А.

Заполните пропуски.

1. Вектором в пространстве называется …

2. Вектор обозначается …

3. Длиной вектора называется …

4. Два вектора в пространстве называются одинаково направленными, если …

5. Для того, чтобы сложить два вектора, нужно …

6. Нулевым вектором называется …

7. Два вектора называются коллинеарными, если …

Уровень В.


8.Найдите координаты вектора ,если C(6;3;-2) и D(2;4;-5).

9.Даны векторы и Найдите.

10. Даны точки А ( 0; -2; 0) и В ( 1; 2; -1). На оси ОZ найдите точку М ( 0; 0; z), равноудалённую

от точек А и В. Точка О – начало координат.


Уровень С.


11. Являются ли векторы и , если С(5;-1;3) ,M(2;-2;4), А(1;-2;3)и В(-5;-4;5)?



Ответы к контрольной работе



1 Вариант

2 Вариант

1

направленный отрезок

направленный отрезок

2

hello_html_132f2b66.gif

hello_html_132f2b66.gif

3

длина вектора

длина отрезка

4

коллинеарны и их направления не совпадают

их направления совпадают

5

на это число умножаются координаты вектора

сложить их координаты

6

они сонаправлены и их длины равны

вектор, у которого начало и конец совпадают

7

любому

они лежат на параллельных или на одной прямой

8

hello_html_5562dbb2.gif

hello_html_13c4943a.gif

9

hello_html_553ca7c2.gif

hello_html_m5ad7dba9.gif

10

М (0; 1; 0)

М (0; 0; -1)

11

не коллинеарны

коллинеарны


Контрольная работа № 10

Производная.


Цель: проверка знаний и практических умений обучающихся.


1 вариант (Уровень А).

А1. Найдите f `(4), если f(x) = 4hello_html_m73e5e47e.gif.

1) 3; 2)2; 3) -1; 4) 1.

А2. Укажите производную функции hello_html_m14b4a7f.gif.

1) hello_html_m26763262.gif; 2) hello_html_m18c43071.gif; 3) hello_html_m1d68f982.gif; 4) hello_html_2b50a639.gif.

А3. Уравнение касательной к графику функции hello_html_d10d9eb.gifв точке с абсциссой х0 = -3 имеет вид:

1) hello_html_m50288524.gif; 2) hello_html_77d6d773.gif; 3) hello_html_m48f01115.gif; 4) hello_html_50e2e6fa.gif.


А4. Тело движется по прямой так, что расстояние S (в метрах) от него до точки B этой прямой

изменяется по закону hello_html_m68cb8eac.gif(t – время движения в секундах). Через сколько секунд

после начала движения мгновенная скорость тела будет равна 72 м/с.

1) 16; 2)15; 3) 14; 4) 13.


Уровень В.

В5. На рисунке изображён график производной некоторой функции hello_html_504b548b.gif, заданной на

промежутке ( - 3; 3). Сколько точек максимума имеет функция hello_html_m7abff7d3.gifна этом промежутке?

112

В6. Найдите угловой коэффициент касательной к графику функции hello_html_m189e8a59.gif в точке hello_html_m80205b6.gif.

В7.Найдите производные функций: а) hello_html_33115d29.gif; б) hello_html_m5d0acd32.gif.

Уровень С.

С8. Найдите сумму тангенсов углов наклона касательных к параболе hello_html_m7fe6821e.gif в точках

пересечения параболы с осью абсцисс.


2 вариант (Уровень А).

А1. Найдите f `(16), если f(x) = 8hello_html_m19adb755.gif.

1) 3; 2)2; 3) -1; 4) 1.

А2. Укажите производную функции hello_html_6872ff61.gif.

1) hello_html_m570fda8a.gif; 2) hello_html_179a7290.gif; 3) hello_html_3af89d3b.gif; 4) hello_html_afa5d36.gif.

А3. Уравнение касательной к графику функции hello_html_4f4f4c49.gifв точке с абсциссой х0 = -3 имеет вид:

1) hello_html_m70d86405.gif; 2) hello_html_4d9773cf.gif; 3) hello_html_5a8801c8.gif; 4) hello_html_m3137e2ce.gif.


А4. Тело движется по прямой так, что расстояние от начальной точки изменяется по закону

hello_html_m114975a1.gif(м), где t – время движения в секундах. Найдите скорость тела через 10

секунд после начала движения .

1) 10; 2)9; 3) 8; 4) 7.

Уровень В.

В5. На рисунке изображён график производной некоторой функции hello_html_504b548b.gif, заданной на

промежутке ( - 2; 2). Сколько точек минимума имеет функция hello_html_m7abff7d3.gifна этом промежутке?

114

В6. Найдите угловой коэффициент касательной, проведенной к графику функцииhello_html_m3352b3e9.gif в точке hello_html_m6a833171.gif.

В7.Найдите производные функций : а) hello_html_m24ab9ba6.gif; б) hello_html_26d1a09b.gif.

Уровень С.

С8. Найдите сумму угловых коэффициентов касательных к параболе hello_html_4f778094.gif в точках

пересечения параболы с осью абсцисс.


Ответы к контрольной работе



1 Вариант

2 Вариант

А1

1 (4)

1 (4)

А2

2х sinx (2)

2х cosx (2)

А3

y = 7x + 15 (2)

y = 5x + 21 (4)

А4

t = 14 c (3)

V(10) = 9 м/с (2)

В5

1 точка, хmax = 1,8

1 точка, хmin = 0

В6

k = -7

k = 16

В7

а) 35(7х + 4)4; б) 9e3x + 2cosx

а) 12(4х + 7)2; б) tg3x + hello_html_m672ab39d.gif

C8

tgα1 + tgα2 = 6 + (-6) = 0

tgα1 + tgα2 = 4 + (-4) = 0


Контрольная работа № 11

Исследование функции с помощью производной.


Цель: проверка знаний и практических умений обучающихся.

1 вариант (Уровень А).


А1. Сколько интервалов убывания имеет функция f(х) = х3 – 3х?


А. 1. Б.2. В. 3. Г. Ни одного


А2. Сколько критических точек имеет функция f(х) = х3 – 9х2 + 15х?


А. 2. Б.1. В. 3. Г. Ни одной


А3. Значение функции у = – х2 + 4х + 2 в точке максимума равно…


А. 0. Б.2. В. 6. Г.8.


А4. Точкой максимума функции f(х) = 16х3 + 81х2 – 21х – 2 является…


А. – 1. Б.3,5. В. – 3. Г. – 3,5.


Уровень В.

В5. Дана функция f(x) = x3 – 3x – 6. Найдите промежутки возрастания и убывания функции.

Уровень С.

С6. Исследуйте с помощью производной функцию f(х) = х3 – 3х2 – 9х и постройте её график.


2 вариант (Уровень А).


А1. Сколько интервалов возрастания имеет функция f(х) = х3 – 3х2?

А. 1. Б. Ни одного. В. 2. Г. 3


А2. Сколько критических точек имеет функция f(х) = х3 – 6х2 + 9х

А. Ни одной. Б. 3. В. 1. Г. 2.


А3. Значение функции у = 2х2 - 8х + 11 в точке минимума равно…


А. 0. Б.5. В. 2. Г.3.


А4. Точкой минимума функции f(х) = 16х3 + 81х2 – 21 х – 5 является…


А. hello_html_41e066e7.gif. Б.2,5 . В. –3. Г. –1 .


Уровень В.

В5. Дана функция f(x) = x3 - 3x + 2. Найдите промежутки возрастания и убывания функции.

Уровень С.

С6. Исследуйте с помощью производной функцию f(х) = х2 – 3х + 1 и постройте её график.

Ответы к контрольной работе



1 Вариант

2 Вариант

А1

А.1.

В.2.

А2

А. 2.

Г.2.

А3

В.6.

Г.3.

А4

Г. -3,5.

А.hello_html_m5e7258dc.gif.

В5

ф hello_html_646e95e1.gif при hello_html_7cd62f9d.gif; ф hello_html_m7a6df57.gifпри hello_html_m2a90aca.gif;

ф hello_html_646e95e1.gif при hello_html_7cd62f9d.gif; ф hello_html_m7a6df57.gifпри hello_html_m2a90aca.gif;

С6

у




3

- 2 -1 5 х




у




1,5

х

-1,25 х


Контрольная работа № 12

Первообразная функции. Интеграл.


Цель: проверка знаний и практических умений обучающихся.

1 вариант (Уровень А).

А1. . Вычислите интеграл:

а) hello_html_m72ca3b93.gif; б) hello_html_46ecb377.gif.


А2. Для функции f(x) = 3sin x найдите:

а) множество всех первообразных;

б) первообразную, график которой проходит через точку М ( hello_html_3206fea8.gif; 0 )

А3. Вычислите, сделав предварительно рисунок, площадь фигуры, ограниченной линиями:

у = 0,5 х2, у = 0, х = 2, х = 0.

А4. Докажите, что функция F является первообразной для функции f(x) на промежутке

( - ∞ ; +∞), если F(х) = х3 – 4, f(x) = 3х2.


Уровень В.


В5. Вычислите интеграл hello_html_m76fce688.gif

Уровень С.


С6. Найдите площадь фигуры, ограниченной линиями у = 6хх2 и у = 2х.

2 вариант

Уровень А.

А1. . Вычислите интеграл:

а) hello_html_4812f195.gif; б) hello_html_49f4866f.gif.


А2. Для функции f(x) = 2cos x найдите:

а) множество всех первообразных;

б) первообразную, график которой проходит через точку М ( hello_html_m57e886ae.gif; 0 )

А3. Вычислите, сделав предварительно рисунок, площадь фигуры, ограниченной линиями:

у = 2 х2, у = 0, х = 3, х = 0.

А4. Докажите, что функция F является первообразной для функции f(x) на промежутке

( - ∞ ; +∞), если F(х) = 2хx2, f(x) = 2 - 2х.


Уровень В.


В5. Вычислите интеграл hello_html_1afd05cd.gif

Уровень С.


С6. Найдите площадь фигуры, ограниченной линиями у = - 6хх2 и у = - 2х.

Ответы к контрольной работе



1 Вариант

2 Вариант

А1

а) 4,5; б) hello_html_m521cc194.gif

а) 18,5; б) hello_html_4ad365d6.gif

А2

a) F(x) = - 3cosx + C ; б)F(x) = - 3cosx + 0.

a) F(x) = 2sinx + C ; б)F(x) = 2sinx - hello_html_m55f16662.gif.

А3

Sфиг = hello_html_m5e0454b6.gifкв.ед.

Sфиг = 18 кв.ед.

А4

F(x) является первообразной для f (x)

F(x) является первообразной для f (x)

В5

18

12

C6

Sфиг = hello_html_m27b67c77.gifкв.ед.

Sфиг = hello_html_m27b67c77.gifкв.ед.


Контрольная работа № 13

Площади поверхностей многогранников.


Цель: проверка знаний и практических умений обучающихся.

1 вариант (Уровень А).

А1. Выберите верное утверждение

а) параллелепипед состоит из шести треугольников;

б) противоположные грани параллелепипеда имеют общую точку;

в) диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.

А2. Количество ребер шестиугольной призмы

а) 18; б) 6; в) 24; г) 12; д) 15.

А3.Наименьшее число граней призмы

а) 3; б) 4; в) 5; г) 6; д) 9.

А4. Не является правильным многогранником

а) правильный тетраэдр; б) правильная призма; в) правильный додекаэдр; г) правильный октаэдр.

А5. Выберите верное утверждение:

а) выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер;

б) правильная треугольная пирамида и правильный тетраэдр – это одно и то же;

в) площадь боковой поверхности пирамиды равна произведению периметра основания на высоту.

А6. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется

а) диагональю; б) медианой; в) апофемой.

А7. Диагональ многогранника – это отрезок, соединяющий

а) любые две вершины многогранника; б) две вершины, не принадлежащие одной грани;

в) две вершины, принадлежащие одной грани.


Уровень В.

В8. Найдите диагонали прямоугольного параллелепипеда, если стороны его основания 3 см , 4 см, а высота равна 10 см .

Уровень С.

С9. В правильной четырёхугольной пирамиде со стороной основания 8 м, боковая грань наклонена к плоскости основания под углом 60 0. Найдите:

а) высоту пирамиды; б) площадь боковой поверхности.


2 вариант (Уровень А).

А1. Выберите верное утверждение

а) тетраэдр состоит из четырех параллелограммов;

б) отрезок, соединяющий противоположные вершины параллелепипеда, называется его

диагональю;

в) параллелепипед имеет всего шесть ребер.

А2. Количество граней шестиугольной призмы

а) 6; б) 8; в) 10; г) 12; д) 16.

А3.Наименьшее число рёбер призмы

а) 9; б) 8; в) 7; г) 6; д) 5.

А4. Не является правильным многогранником

а) правильный тетраэдр; б) правильный додекаэдр; в) правильная пирамида; г) правильный октаэдр.

А5. Выберите верное утверждение:

а) правильный додекаэдр состоит из восьми правильных треугольников;

б) правильный тетраэдр состоит из восьми правильных треугольников;

в) правильный октаэдр состоит из восьми правильных треугольников.

А6. Апофема – это

а) высота пирамиды; б) высота боковой грани пирамиды;

в) высота боковой грани правильной пирамиды.

А7. Усеченная пирамида называется правильной, если

а) ее основания – правильные многоугольники;

б) она получена сечением правильной пирамиды плоскостью, параллельной основанию;

в) ее боковые грани – прямоугольники.


Уровень В.

В8. Найдите боковое ребро правильной четырёхугольной, пирамиды, у которой сторона

основания 8 м, а высота равна 10 м.


Уровень С.

С9. В прямоугольном параллелепипеде стороны основания 5 м и 12 м, а диагональ

параллелепипеда наклонена к плоскости основания под углом 30 0. Найдите:

а) высоту параллелепипеда; б) площадь боковой поверхности.


Ответы к контрольной работе



1 Вариант

2 Вариант

А1

в)

б)

А2

а) 18

б) 8

А3

в)5

а) 9

А4

б)

в)

А5

а)

в)

А6

в)

в)

А7

б)

б)

В8

5hello_html_m15685464.gifм

hello_html_5b6ac7a3.gifм

С9

h = 4hello_html_m55f16662.gif м ; Sб.п. = 128 м2

h = hello_html_24dbbc22.gif; Sб.п. = hello_html_meb745db.gifм2



Контрольная работа № 14

Площади поверхностей тел вращения.


Цель: проверка знаний и практических умений обучающихся.

1 вариант (Уровень А).

Подтвердить или опровергнуть следующие утверждения.

А1.При вращении прямоугольника около стороны как оси получаем цилиндр.

А2.Отрезки, соединяющие вершину конуса с точками окружности основания называются

образующими конуса.

А3. Осевым сечением цилиндра является треугольник.

А4. Высота цилиндра (прямого) больше образующей.

А5. При вращении полукруга вокруг его диаметра как оси получается шар.

А6. Площадь полной поверхности цилиндра вычисляется по формуле S = 2hello_html_m4fcadaa7.gif(r+h), где r радиус цилиндра, h-высота цилиндра.

Уровень В.

В7. Высота цилиндра равна 4 м, расстояние между осью цилиндра и параллельной ей плоскостью сечения равно 3 м, а площадь сечения 32 м2. Найдите площадь боковой поверхности цилиндра.

В8. Высота конуса равна 12 м, а образующая 13 м. Найдите площадь осевого сечения конуса.

Уровень С.

С9.Площадь сечения, не проходящего через центр шара, равна 16π м2. Найдите площадь поверхности шара, если расстояние от центра шара до секущей плоскости равно 5 м.


2 вариант . (Уровень А).

Подтвердить или опровергнуть следующие утверждения.


А1.При вращении прямоугольного треугольника вокруг его катета как оси получаем конус.

А2.Отрезки, соединяющие соответствующие точки окружностей кругов называются

образующими цилиндра.

А3. Осевым сечением конуса является прямоугольник.

А4. Высота конуса равна образующей.

А5. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара.

А6. Все образующие цилиндрической поверхности параллельны друг другу.

Уровень В.

В7. Площадь боковой поверхности цилиндра равна 60π м2, а радиус основания 5 м. Найдите длину образующей цилиндра.

В8. Радиус основания конуса равен 12 м, а образующая 13 м. Найдите площадь осевого сечения конуса.

Уровень С.

С9. Радиус сферы равен 13 м, а расстояние от её центра до секущей плоскости равно 5 м. Найдите длину окружности сечения сферы.





Ответы к контрольной работе



1 Вариант

2 Вариант

А1

да

да

А2

да

да

А3

да

нет

А4

нет

нет

А5

да

да

А6

нет

да

В7

40π м2

6 м

В8

60 м2

60 м2

С9

161π м2

24π м2


Контрольная работа № 15

Объёмы многогранников.


Цель: проверка знаний и практических умений обучающихся.


2 вариант (Уровень А).


А1. Какой не может быть призма?

А. Прямой; Б. Наклонной; В. Правильной; Г. Усеченной.

А2. Какая формула используется для вычисления объема призмы, где R – радиус основания, H – высота:

А. hello_html_m6ca3a05f.gif; Б. hello_html_76e85a84.gif; В. hello_html_39c81dbf.gif; Г. hello_html_1a8d5931.gif.

А3. Назовите, какая фигура не является правильным многогранником.

А. Куб; Б. Додекаэдр; В. Октаэдр; Г. Параллелепипед.

А4. Ребро куба равно 2 см. Вычислите сумму длин всех ребер куба.

А. 24 см; Б. 48 см; В. 12 см; Г. 60 см.

А5. Площадь грани куба равна 16 смhello_html_6c778cd5.gif. Вычислите его объем.

А. 24 смhello_html_m2712f2b0.gif; Б. 48 смhello_html_m2712f2b0.gif; В. 56 смhello_html_m2712f2b0.gif; Г. 64 смhello_html_m2712f2b0.gif.

А6. Существует ли призма, у которой только одно боковое ребро перпендикулярно основанию?

А. Да; Б. Нет.

Уровень В.


В7. Из вершины В квадрата ABCD со стороной 6 см к его плоскости проведён

перпендикуляр BK. Найдите объём пирамиды, если AK = 10 см.

В8. Основанием призмы является прямоугольный треугольник с острым углом 600 и катетом, прилежащим к этому углу, равным 9 см. Высота призмы равна 10 см. Найдите: а) объём призмы;

б) площадь полной поверхности призмы.


2 вариант (Уровень А).


А1. Прямоугольный параллелепипед – это

А. Пирамида; Б. Призма; В. Октаэдр; Г. Тетраэдр.

А2. Объем пирамиды определяется по формуле, где hello_html_19f1657d.gif - площадь основания, H – высота,

R – радиус.

А. hello_html_m6ca3a05f.gif; Б. hello_html_m2c0499b0.gif; В. hello_html_39c81dbf.gif; Г. hello_html_2e42f1cf.gif.

А3. Апофема – это

А. Образующая цилиндра; Б. Высота конуса; В. Высота боковой грани пирамиды;

Г. Высота усеченного конуса.

А4. Измерения прямоугольного параллелепипеда равны 2 см, 3 см и 5 см. Вычислите его объем.

А. 30 см3; Б. 15 смhello_html_6c778cd5.gif; В. 20 смhello_html_6c778cd5.gif; Г. 25 смhello_html_6c778cd5.gif.

А5. Ребро куба равно 2 см. Вычислите площадь поверхности куба.

А. 12 смhello_html_6c778cd5.gif; Б. 24 смhello_html_6c778cd5.gif; В. 16 смhello_html_6c778cd5.gif; Г. 18 смhello_html_6c778cd5.gif.

А6. Существует ли призма, имеющая 20 ребер?

А. Да; Б. Нет.

Уровень В.


В7. Основание прямой призмы - прямоугольный треугольник с катетом 5 см и гипотенузой 13 см. Высота призмы равна 10 см. Найдите объём призмы.

В8. В правильной четырёхугольной пирамиде боковые грани наклонены к

плоскости основания под углом 300, а основание равно 6 см. Найдите:

а) объём пирамиды;

б) площадь полной поверхности пирамиды.



Ответы к контрольной работе



1 Вариант

2 Вариант

А1

г

б

А2

в

а

А3

г

в

А4

а

а

А5

б

б

А6

б

б

В7

96 см3

300 см3

В8

а) 405hello_html_m55f16662.gifсм3; б)171hello_html_m55f16662.gif + 270 см2;

а) 12hello_html_m55f16662.gifсм3; б) 24hello_html_m55f16662.gif + 36 см2;

С9

8

56



Контрольная работа № 16

Объёмы тел вращения.


Цель: проверка знаний и практических умений обучающихся.


2 вариант (Уровень А).

А1. Сфера является поверхностью:

А) конуса; б) усеченного конуса; в) цилиндра; г) шара.

А2.Изменится ли объём цилиндра, если диаметр его основания увеличить в 2 раза, а высоту уменьшить в 4 раза?

А3. Из каких тел состоит тело, полученное вращением равнобедренной трапеции вокруг большего основания?

А4. Объём цилиндра равен 12 см3. Чему равен объём конуса, который имеет такое же основание и такую же высоту, как и данный цилиндр?

А5. Найдите объём цилиндра с высотой, равной 3 см и диаметром основания – 6 см. а) 27π см3; б) 9π см3; в) 36π см3; г) 18π см3; д) 54π см3.

А6. Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилиндра равны 6. Найдите объём параллелепипеда.

Уровень В.

В7. В шаре на расстоянии 3 см от центра проведено сечение, радиус которого 4 см.

Найдите объём шара.

В8. Прямоугольный треугольник с гипотенузой 13 см вращается вокруг оси, содержащей катет длиной 5 см. Найдите объём полученного конуса и площадь его полной поверхности.


Уровень С.

С9. Найдите объем V части цилиндра, изображенной на рисунке.,2Описание: http://ege.yandex.ru/media/mathematics/v30/math_25_11.png

Начало формы



2 вариант (Уровень А).


А1. Сфера и плоскость не могут иметь:

А) одну общую точку; б) ни одной общей точки; в) две общие точки; г) много общих точек.

А2. Во сколько раз увеличится объем кругового конуса, если высоту увеличить в 3 раза. А3. Из каких тел состоит тело, полученное вращением равнобедренной трапеции вокруг меньшего основания?

А4. Цилиндр и конус имеют общее основание и высоту. Найдите объем конуса, если объем цилиндра равен 120 π см3.

А5. Высота конуса 3 см, образующая 5 см. Найдите его объем.

а) 27π см3; б) 9π см3; в) 16π см3; г) 18π см3; д) 54π см3.

А6. Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилиндра равны 5. Найдите объём параллелепипеда.

Уровень В.


В7. В шаре на расстоянии 8 см от центра проведено сечение, радиус которого 6 см. Найдите объём шара.

В8. Цилиндр образован вращением прямоугольника с диагональю 5 см вокруг стороны длиной 3 см. Найдите объём цилиндра и площадь полной его поверхности.


Уровень С.

С9. Найдите объем V части цилиндра, изображенной на рисунке. Описание: b9.247





Ответы к контрольной работе



1 Вариант

2 Вариант

А1

г

в

А2

не изменится

в 3 раза увеличится

А3

из двух конусов и цилиндра

из двух конусов и цилиндра

А4

4

40π

А5

27π см3

16π

А6

864

500

В7

hello_html_29ca8537.gifсм3

hello_html_5a18f83d.gifсм3

В8

240π см 3 ; 300π см2;

48π см 3 ; 56π см2;

С9

13,5π


Контрольная работа № 17

Комбинаторика, статистика и теория вероятностей.


Цель: проверка знаний и практических умений обучающихся.


Уровень А.

А1. Для каждого из описанных событий определите, каким оно является: невозможным, достоверным или случайным:

1) завтра будет хорошая погода;

2) в январе в городе пойдет снег;

3) в 12 часов в городе идет дождь, а через 24 часа будет светить солнце;

4) на день рождения вам подарят говорящего крокодила;

5) круглая отличница получит двойку;

6) камень, брошенный в воду утонет.

А2. Определите моду, среднее арифметическое и размах ряда: 5, 6, 11, 11, – 1.

А3. Какова вероятность того, что задуманное двузначное число делится на 3 или делится на 2? Определите вид события.

а) сложение событий;

б) произведение событий.

А4. Вычислитеhello_html_m136b6163.gif.

А5. На стол бросают два игральных тетраэдра (серый и белый), на гранях каждого из которых точками обозначены числа от 1 до 4. Сколько различных пар чисел может появиться на гранях этих тетраэдров, соприкасающихся с поверхностью стола?

А6. Из 10 первых натуральных чисел случайно выбираются 2 числа. Вычислите вероятности следующих событий:

а) одно из выбранных чисел – двойка; б) оба числа нечетные.

Уровень В.


В7. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?


В8. На каждой карточке написана одна из букв к, л, м, н, о, п. Четыре карточки наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании получится слово «клоп»

Уровень С.


С9. Найдите вероятность того, что случайным образом выбранное двузначное число при делении на 11 дает в остатке 10.


2 вариант (Уровень А).

А1. Для каждого из описанных событий определите, каким оно является: невозможным, достоверным или случайным:

1) вы выходите на улицу, а навстречу идет слон;

2) вас пригласят лететь на Луну;

3) черепаха научится говорить;

4) выпадет желтый снег;

5) вы не выиграете, участвуя в беспроигрышной лотерее;

6) после четверга будет пятница.

А2. Определите моду, среднее арифметическое и размах ряда:15, 4, 12, – 3, 15.


А3. Какова вероятность того, что первое из задуманных двузначных чисел делится на 2, а второе – делится на 5? Определите вид события.

а) сложение событий;

б) произведение событий.

А4. Вычислитеhello_html_m2823836a.gif.

А5. Из коробки, содержащей 8 мелков различных цветов, Гена и Таня берут по одному мелку. Сколько существует различных вариантов такого выбора двух мелков?


А6. Из 10 первых натуральных чисел случайно выбираются 2 числа. Вычислите вероятности

следующих событий:

а) одно из выбранных чисел – единица; б) оба числа четные.


Уровень В.


В7. В урне 6 белых и 4 черных шара. Из этой урны наудачу извлекли 5 шаров. Какова вероятность того, что 2 из них белые, а 3 черные?

В8. На каждой карточке написана одна из букв р, с, т, у, л, х. Четыре карточки наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании получится слово «стул»?




Уровень С.


С9. Найдите вероятность того, что случайным образом выбранное двузначное число при делении на 13 дает в остатке 5.

Ответы к контрольной работе



1 Вариант

2 Вариант

А1

  1. случ; 2) достов; 3) случ; 4)невозм;

5) случ; 6) достов.

  1. невоз; 2) случ; 3) невоз; 4) случ;

5) невоз; 6) достов.

А2

мода равна 11; размах 12; ср. ариф. 6,4;

мода равна 15; размах 18; ср. ариф. 8,6;

А3

а

б

А4

90

21600

А5

16

56

А6

а) 0,2; б) hello_html_663ece7e.gif

а) 0,2; б) hello_html_663ece7e.gif

В7

hello_html_m3701c102.gif

hello_html_101abf96.gif

В8

hello_html_1397ca6c.gif

hello_html_m13845f52.gif

С9

0,1

hello_html_52ace3cd.gif


3. 2.4. Задания для итогового контроля (экзамен)

1. Общие положения


Формой аттестации по дисциплине является экзамен. Итогом экзамена является оценка знаний и умений обучающегося по пятибалльной шкале.

Экзамен проводится в форме выполнения заданий на базе техникума.

Условия проведения экзамена

Экзамен проводится по группам.

Количество вариантов задания - 2.

Задания предусматривают одновременную проверку усвоенных знаний и освоенных умений по всем темам программы. Ответы предоставляются письменно.

Время выполнения задания - 5 часов (академических).

Оборудование: бумага, ручка, карандаш, линейка, вариант задания, справочная литература, микрокалькулятор.


2. Контрольно-оценочные материалы (КОМ)

Инструкция для обучающихся по выполнению экзаменационной работы

На выполнение письменной экзаменационной работы по математике дается 5 астрономических часа (300 минут), заданий всего 10, из них 8 по алгебре и началам анализа, две задачи по геометрии. Для получения оценки 5 (отлично) необходимо верно решить 8 заданий, одно из которых геометрическая задача, оценка 4 (хорошо) выставляяется за любые правильно выполненные 7 заданий, за 6 правильно выполненных заданий выставляется оценка 3 (удовлетворительно), за меньшее количество решенных заданий работа оценивается «неудовлетворительно). При выполнении большинства заданий обязательной части требуется представить ход решения и указать полученный ответ.


При выполнении заданий 1-3 запишите ход решения и полученный ответ.


1. (1 балл) Найдите корень уравнения 32 - 2х = 81.

2. (1 балл) Найдите значение выражения hello_html_4bb9b7af.gif.

3. (1 балл) Флакон шампуня стоит 160 рублей. Какое наибольшее число флаконов

можно купить на 1000 рублей во время распродажи, когда скидка составляет 25%?

4. (1 балл) На рисунке (см. ниже) изображен график функцииhello_html_85d2e96.gif, определенной на

интервале( - 6; 8). Определите количество целых точек, в которых производная

функции положительна.

5. (1 балл) Определите наименьшее и наибольшее значения функции.

6. (1 балл) При каких значениях х, f(х) ≥ 0.

7. (1 балл) При каких значениях х, f(x) ≤ 0.

hello_html_m280ce067.gif














При выполнении заданий 8-10 укажите ход решения и запишите полученный ответ.

8. (1 балл) Найдите значение sinα, если известно, что cosα = hello_html_780f19a2.gif и α I четверти.

9. (1 балл) Решить уравнение hello_html_1a51f759.gif .

10. (1 балл) Решите уравнение log5(5 – 5x) = 2log52.

Вариант 2

При выполнении заданий 1-3 запишите ход решения и полученный ответ.


1. (1 балл) Найдите корень уравнения 2 1 - х = 16.

2. (1 балл) Найдите значение выражения hello_html_5c44b712.gif.

3. (1 балл) Тетрадь стоит 20 рублей. Какое наибольшее число таких тетрадей можно

будет купить на 350 рублей после понижения цены на 25 %.


4. (1 балл) На рисунке (см. ниже) изображен график функцииhello_html_85d2e96.gif, определенной на

интервале (-7; 7). Определите количество целых точек, в которых производная

функции положительна.

5. (1 балл) Определите наименьшее и наибольшее значения функции.

6. (1 балл) При каких значениях х, f(х) ≥ 0.

7. (1 балл) При каких значениях х, f(x) ≤ 0.


task-1/ps/task-1.9











При выполнении заданий 8-10 укажите ход решения и запишите полученный ответ.

8. (1 балл) Найдите значение cos α, если известно, что sin α = hello_html_45e9df86.gif и α I четверти.

9. (1 балл) Решить уравнение hello_html_9b688e9.gif.

10. (1 балл) Решите уравнение log3 ( 2 - 2x ) = 2log3 4.


Ответы к контрольной работе



1 вариант

2 вариант

1

х = - 1

х = - 3

2

0,5

0,2

3

8 флаконов

23 тетради

4

4 точки

6 точек

5

унаиб = 4,5; унаим = -3,3

унаиб = 3; унаим = -3,5

6

х hello_html_3b011dda.gif

х hello_html_551917a5.gif

7

х hello_html_2d810cb7.gif

х hello_html_64db252f.gif

8

hello_html_m477ee47b.gif

hello_html_15558952.gif

9

hello_html_48cffc08.gif

hello_html_5cd19d.gif

10

0,2

-7

11

184900 тыс. руб.

213750 тыс. руб.

12

6

4

13

256

243

14

4 и - 9

3 и 2

15

1

5

16

4 секунды

2 секунды

17

hello_html_m77900230.gif

hello_html_m604c52d.gif

18

hello_html_m22ee53b3.gif

hello_html_m2807e8f.gif

19

21

9

20

х = 1; у = 2

х = 1; у = 0

21

138π см2

224π см3

22

hello_html_m198441c9.gif

hello_html_m4982b677.gif


Критерии ошибок


                       К    г р у б ы м    ошибкам относятся ошибки, которые обнаруживают незнание обучающимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;

К    н е г р у б ы м   ошибкам относятся:  потеря корня или сохранение в ответе  постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;

 К    н е д о ч е т а м    относятся:  нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях.

Оценка устных ответов

 Ответ оценивается отметкой «5», если обучающийся:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,

  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;

  • отвечал самостоятельно без наводящих вопросов преподавателя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые обучающийся легко исправил по замечанию преподавателя.

Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям    на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию преподавателя.

 Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке обучающихся»);

  • имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов преподавателя;

  • обучающийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание обучающимся большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.

 Отметка «1» ставится, если:

  • обучающийся обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.  








Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 21.03.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров728
Номер материала ДВ-543097
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх