350056
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыКонус. Сечения конуса. Развертка конуса. Площадь поверхности конуса.

Конус. Сечения конуса. Развертка конуса. Площадь поверхности конуса.

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Зам.Дир по УВР_______________ Утверждаю

_____ Дата_________



Предмет ГЕОМЕТРИЯ

Класс 11

Тема урока: Конус. Сечения конуса. Развертка конуса. Площадь поверхности конуса.

Цели урока:

Изучить понятие конуса, его элементов; рассмотреть построение прямого конуса; рассмотреть нахождение полной поверхности конуса.

рассмотреть виды сечений конуса различными плоскостями, ввести понятие усеченного конуса, его элементов, рассмотреть усеченный конус как тело вращения, вывести формулу для вычисления площади боковой и полной поверхности усеченного конуса, показать связь темы с окружающим миром;

развивать логическое мышление  и конструктивные навыки, сознательное восприятие учебного материала, зрительную память и грамотную математическую речь, навыки самоконтроля и самооценки;

воспитывать познавательную активность, чувство прекрасного, культуру речи и общения, аккуратность.

Тип урока: Изучение нового материала.

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2.Этап актуализации.

Задачи: обеспечение мотивации учения школьников, включение в совместную деятельность по определению целей урока. Актуализировать субъективный опыт учащихся.

ТЕСТ по теме "Цилиндр"

3. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания .

Содержание этапа:

6.1. Конус как фигура вращения

Определим еще одну замечательную геометрическую фигуру — конус(рис.44.1).

Пусть дан прямоугольный треугольник Q (рис. 44.2). Если этот прямоугольный треугольник вращать вокруг оси I, содержащей катет

hello_html_38e97a57.png

треугольника, то в результате этого вращения мы получим фигуру вращения — конус (рис. 44.3).

Определение 19. Конусом называется фигура, полученная при вращении прямоугольного треугольника вокруг одного из катетов.

hello_html_1a9f2d97.png

На рисунке 45 конус получен при вращении треугольника FAO с прямым углом О вокруг катета FO. Используя этот рисунок и имеющиеся знания, можно узнать о следующих свойствах конуса:

  1. Катет О А при вращении образует круг, который называется основанием конуса.

  2. Плоскость основания конуса перпендикулярна к оси вращения FO, <FOA=90°. Тем самым мы можем определить высоту конуса.

  3. Перпендикуляр, проведенный из вершины конуса на плоскость основания, является его высотой.

  4. Гипотенуза FA при вращении вокруг оси образует боковую поверхность конуса. Отрезки, соединяющие любую точку окружности основания с точкой F — вершиной конуса, равны как наклонные, имеющие равные проекции. Эти отрезки называются образующими конуса. Боковая поверхность конуса называется также конической поверхностью.

У конуса, основанием которого всегда является круг, а основание высоты конуса всегда попадает в центр основания конуса, называется прямым круговым конусом.

На рисунке 46 мы видим непрямой конус, но такие конусы в школьном курсе геометрии практически не рассматриваются (конус на рис. 46 не является фигурой вращения).

6.2. Сечения конуса плоскостью

Конус и плоскость могут иметь в пересечении часть конуса. В этом случае мы получаем различные сечения. Пусть плоскость сечения проходит через две образующие конуса.

Через две прямые, на которых лежат какие-нибудь две образующие конуса, можно провести единственную плоскость а. Эта плоскость пересечет основание конуса по хорде, а боковую поверхность — по двум образующим. Общей частью этой плоскости и конуса является равнобедренный треугольник (рис.47.1). Если плоскость а проходит через ось конуса, то полученный в сечении треугольник называется осевым сечением конуса.

На рисунке 47.2 треугольник FAB — осевое сечение, а на рисунке 47.1 треугольник FAB осевым сечением не является.

hello_html_438b74df.pnghello_html_59dae08b.png













Конус можно пересечь плоскостью а, перпендикулярной к его оси. В этом случае плоскость сечения параллельна плоскости основания, а сечением конуса является круг (рис. 47.3) (обоснуйте ваши выводы).Если боковую поверхность конуса пересечь плоскостью р так, чтобы эта плоскость не пересекала его оснований и не была перпендикулярной к оси конуса, то в сечении получается эллипс (рис. 47.3).Плоскость, которая проходит через образующую конуса и не имеет с ним других общих точек, называют касательной плоскостью конуса (рис. 48).





6.3. Развертка и площадь поверхности конуса

Если боковую поверхность конуса разрезать по какой-нибудь образующей, например по АВ, и развернуть ее на плоскости, то получится развертка боковой поверхности конуса (рис.49).

Какую фигуру мы при этом получим? Как найти площадь этой фигуры? hello_html_m15db3d89.png

Развертка боковой поверхности конуса радиуса R и образующей I представляет собой сектор круга радиуса I, длина которого 2hello_html_6b2fd1c.gif R (рис. 49).

Площадь такой развертки принимают за площадь S боковой поверхности конуса и обозначают S бок. пов. кон.

Используя формулу площади кругового сектора, получим:

S бок.пов.кон.= S сект.= hello_html_76f03195.gif 'где hello_html_m58576334.gif — угловая величина дуги сектора.

Приравнивая длину окружности основания конуса 2hello_html_6b2fd1c.gif R к длине дуги сектора hello_html_89274ef.gif, найдем угловую величину дуги hello_html_m58576334.gif:

2hello_html_6b2fd1c.gif R=hello_html_89274ef.gif, откуда hello_html_m58576334.gif = hello_html_m20ef2792.gifhello_html_25bf4b10.png

где С— длина окружности основания конуса. Итак, мы вывели формулу: площадь боковой поверхности конуса равна половине произведения длины окружности основания на образующую.

S бок. пов. кон.= hello_html_6b2fd1c.gifRhello_html_7571aeb8.gif, где R — радиус основания конуса, hello_html_7571aeb8.gif — образующая конуса.

За площадь поверхности конуса, или за площадь полной поверхности конуса, принимается площадь его развертки Sполн.. Она состоит из площади боковой поверхности и площади круга основания (рис. 49).

hello_html_5f855438.png

5. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

Содержание этапа: №8, 9,10.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.№14, 15(1)

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

Общая информация

Номер материала: ДВ-472835

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.