503234
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5 480 руб.;
- курсы повышения квалификации от 1 400 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до 28 февраля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

Инфоурок / Математика / Другие методич. материалы / Краткие теоретические сведения по теме "Комбинаторика", "Теория вероятностей"

Краткие теоретические сведения по теме "Комбинаторика", "Теория вероятностей"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

«Решение задач по алгебре событий»

Пусть - пространство элементарных событий рассматриваемого опыта. Для каждого возможного в этом опыте события А выделим совокупность всех элементарных событий, наступление которых необходимо влечёт наступление А. Эти элементарные события благоприятствуют появлению А. Множество этих элементарных событий обозначим тем же символом А, что и соответствующее событие.

Таким образом, событие А состоит в том, что произошло одно из элементарных событий, входящих в указанное множество А. Мы отождествляем событие А и соответствующее ему множество А элементарных событий.

Событие называется достоверным, если оно наступает в результате появления любого элементарного события. Обозначение: .

Невозможным назовём событие, не наступающее ни при каком элементарном событии. Обозначение: .

Пример. В опыте с кубиком достоверным является событие, что выпадет число, меньшее 7. Невозможным – выпадет отрицательное число.


Суммой (или объединением) двух событий А и В назовём событие А+В (или АВ), происходящее тогда и только тогда, когда происходит или А, или В. Сумме событий А и В соответствует объединение множеств А и В. Очевидные соотношения: А+=А, А+=, А+А=А.

Пример. Событие «выпало чётное» является суммой событий: выпало 2, выпало 4, выпало 6.


Произведением (или пересечением) двух событий А и В назовём событие АВ (или АВ), которое происходит тогда и только тогда, когда происходит и А, и В. Произведению событий А и В соответствует пересечение множеств А и В.

Очевидные соотношения: А=, А=А, АА=А.

Пример. «Выпало 5» является пересечением событий: выпало нечётное и выпало больше 3-х.


Два события назовём несовместными, если их одновременное появление в опыте невозможно, т.е. АВ=.

Пример. Выпало чётное число и выпало нечётное число – события несовместные.


Событие назовём противоположным к А, если оно происходит тогда и только тогда, когда А не происходит. Очевидные соотношения: А+=, А=, =А.

Пример. Выпало чётное число и выпало нечётное число – события противоположные.


Разностью событий А и В назовём событие А\В, происходящее тогда и только тогда, когда происходит А, но не происходит В. Очевидные соотношения: =\А, А\В=А.

Операции сложения и умножения обладают следующими свойствами: А+В=В+А, АВ=ВА, А(В+С)=АВ+АС, А(ВС)=(АВ)С.

Пример. Производится два выстрела по цели. Пусть событие А – попадание в цель при первом выстреле и В – при втором, тогда и - промах соответственно при первом и втором выстрелах. Обозначим поражение цели событием С и примем, что для этого достаточно хотя бы одного попадания. Требуется выразить С через А и В.

Решение. Цель будет поражена в следующих случаях: попадание при первом и промах при втором; промах при первом и попадание при втором; попадание при первом и втором выстрелах. Перечисленные варианты можно соответственно записать: А, В и АВ. Интересующее нас событие заключается в наступлении или первого, или второго, или третьего вариантов (хотя бы одного), то есть

С= А+В+АВ.

С другой стороны, событие , противоположное С, есть промах при двух выстрелах, то есть , отсюда искомое событие С можно записать в виде С=.



«Решение задач по комбинаторике»

Комбинаторными задачами называются задачи, в которых необходимо подсчитать, сколькими способами можно сделать тот или иной выбор, выполнить какое-либо условие.

Пусть имеется множество, содержащее n элементов. Каждое его упорядоченное подмножество, состоящее из k элементов, называется размещением из n элементов по k элементов:

, где n!=1*2*3*…*n

Пример. Группа учащихся изучает 7 учебных дисциплин. Сколькими способами можно составить расписание занятий на понедельник, если в этот день недели должно быть 4 различных урока?

Решение. Число способов равно числу размещений из 7 элементов по 4, т.е. равно . Получаем =.


Размещения из n элементов по n элементов называются перестановками из n элементов:

.

Пример. Сколько шестизначных чисел, кратных пяти, можно составить из цифр 1, 2, 3, 4, 5, 6 при условии, что в числе цифры не повторяются?

Решение. Цифра 5 обязана стоять на последнем месте. Остальные пять цифр могут стоять на оставшихся пяти местах в любом порядке. Следовательно, искомое число шестизначных чисел, кратных пяти, равно числу перестановок из пяти элементов, т.е. 5!=5*4*3*2*1=120.


Сочетания. Пусть имеется множество, состоящее из n элементов. Каждое его подмножество, содержащее k элементов, называется сочетанием из n элементов по k элементов:


Пример. Сколько матчей будет сыграно в футбольном чемпионате с участием 16 команд, если каждые две команды встречаются между собой один раз?

Решение. Матчей состоится столько, сколько существует двухэлементных подмножеств у множества, состоящего из 16 элементов, т.е. их число равно .

Свойства сочетаний:


«Вычисление вероятностей событий по классической формуле определения вероятностей»

Классическое определение вероятности: вероятность Р(А) события А равна отношению числа возможных результатов опыта (М), благоприятствующих событию А, к числу всех возможных результатов опыта (N):

.

Пример 1. Подбрасывание игральной кости один раз. Событие А состоит в том, что выпавшее число очков – чётно. В этом случае N=6 – число граней куба; М=3 – число граней с чётными номерами; тогда Р(А)=3/6=1/2.

Пример 2. Подбрасывание симметричной монеты 2 раза. Событие А состоит в том, что выпало ровно 2 герба. В этом случае N=4, т.к. ={ГГ, ГР, РГ, РР}; М=1, т.к. А={ГГ}. Тогда Р(А)= ¼.

Пример 3. Вытягивание шара из урны, содержащей 2 белых и 3 чёрных шара. Событие А состоит в том, что вытянули чёрный шар. В этом случае N=2+3=5 (общее число шаров в урне), М=3 (число чёрных шаров), тогда Р(А)=3/5.

Пример 4. Набирая номер телефона, абонент забыл две последние цифры. Какова вероятность того, что он с первого раза наберёт эти цифры правильно, если он помнит, что они различны?

Решение. Обозначим А – событие, состоящее в том, что абонент, набрав произвольно две цифры, угадал их правильно. М – число правильных вариантов, очевидно, что М=1; N – число различных цифр, . Таким образом, Р(А)=M/N=1/90.

Пример 5. Шесть шариков случайным образом располагаются в шести ящиках так, что для каждого шарика равновероятно попадание в любой ящик и в одном ящике может находиться несколько шариков. Какова вероятность того, что в каждом ящике окажется по одному шарику?

Решение. Событие А – в каждом ящике по одному шарику. М – число вариантов распределения шариков, при которых в каждый ящик попадает по одному шарику, М=6! (число способов переставить между собой 6 элементов). N – общее число вариантов N=66 (так как каждый шарик может попасть в каждый из ящиков). В результате получаем .

Пример 6. В урне 3 белых и 4 чёрных шара. Из урны вынимаются два шара. Найти вероятность того, что оба шара будут белыми.

Решение. Обозначим: А – событие, состоящее в появлении белых шаров; N – число способов вытащить 2 шара из 7;M – число способов вытащить 2 белых шара из имеющихся 3 белых шаров; .



4

Общая информация

Номер материала: ДБ-103307

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.