970053
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаКонспектыКраткосрочный план урока на тему " Первообразная и неопределенный интеграл" по алгебре в 11 классе

Краткосрочный план урока на тему " Первообразная и неопределенный интеграл" по алгебре в 11 классе

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Тема урока: "Первообразная и неопределенный интеграл"















Арифметические действия над рациональными числами. Степень с целым показателем и ее свойства рациональными числами. Степень с целым показателем и ее свойства








Школа:СШ№8 г. Кокшетау

Дата: 02.09.2015г.



ФИО учителя: Мухамбетова З.Т.

КЛАСС: 11А

Количество присутствующих:14

Количество отсутствующих:0

Цели обучения, которые необходимо достичь на данном уроке

Ц . учащихся определять является ли функция F(x) первообразной для функции f(x).

З а )Обучающая -  на основе имеющихся у учащихся знаний по теме: «Производная» подвести учащихся к понятию первообразной, определить вместе с ними это понятие;

б) развивающая - формирование приемов обобщения, алгоритмизации;

в) воспитывающая - воспитывать умение участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнении, показ практической применимости математических знаний.

Языковая цель

Учащиеся могут: назвать ключевые слова и фразы на казахском языке

Ключевые слова и фразы: функция,ОО,ОДЗ,четность,

нечетность,свойства, график,период

Предыдущее обучение

-

План1. Организационный момент
2. Актуализация прежних знаний
а) фронтальный опрос (по формулам и правилам) 
б) вычисление производных (устно) 
3. Объяснение нового материала. 
4. Первичное закрепление 
5. Историческая справка 
6. Итог урока 
7. Домашнее задание


Планируемые сроки

Планируемые действия (замените записи ниже запланированными действиями)

Ресурсы

Начало урока


1.Психологический настрой. Три пути ведут к знанию:путь размышления – это путь самый благородный, путь подражания – это путь самый легкий и путь опыта – это путь самый горький 3. 2.Актуализация знаний. «Мозговой штурм»

1) Опорные знания: производная, таблица производных, физический смысл производной.

2) Связь с прошлой темой: на уроке используются таблицы производной, вычисляются производные функций.

Задание классу:

  1. Вычислить производные следующих функций:

(1)=                          ((2х-3)6)/=

(х)=                          ((х5+20))/=

(30х)/=                       (Соs 3х)/=

3)/=                         ( 5х10)/=

  1. Назвать физический смысл производной.




ИКТ






Середина урока

3.Изучение нового материала (Формирование новых понятий и способов действий) 

Создание проблемной ситуации.

 Задача: При обработке на станке деталь нагреть до 1200. Измерения полагается производить при 200. Скорость охлаждения детали пропорциональна разности температур детали и воздуха в цехе. Сколько же нужно ждать?

    Здесь T(t) – температура детали, T/(t) = k(T-180)/- скорость её охлаждения.

 Ставится вопрос: зная производную некоторой функции, мы должны найти саму функцию. Как это сделать?

Учащиеся выполняют задания: заполнить пропущенные места в скобках

                   (…)= 2х                         (…)= 0

                   (…)= 4х3                       (…)/ = 25

Как можно иначе сформулировать это задание (найти саму функцию, зная её производную; восстановить функцию по производной)?

 Восстанавливаемая функция называется первообразной. Дайте определение первообразной функции.

Помощь учителя: если мы обозначим саму функцию через f(x), а её первообразную через F(x) , то куда поставить штрих в равенстве F=f? Или: как проверить, что некоторая функция F(x) является первообразной для f(x)?

Учащиеся  обсуждают и дают определение первообразной.

 На доске записи:

Производная – «производит»  на свет новую функцию, первообразная - первичный образ.

Определение:  Функция F(x) называется первообразной для функции f(x) , если F/(x) = f(x) на заданном промежутке.


3. Фронтальная работа : « Шпаргалка» техника «Толстые, тонкие вопросы»

4. Тренировочные упражнения:

1 (1-4). №2 (1-4) №7 комментированное письмо

5. Закрепление нового материала ( Применение знаний и новых способов действий в ситуациях по образцу и в измененных условиях)

1) F(x) = x3-2x+1     f(x)=3x2-2

   2) F(x)= x4-7           f(x)=4x3

   3) F(x)=10              f(x)=0

   4) F(x)=https://www.google.com/chart?cht=tx&chf=bg,s,FFFFFF00&chco=000000&chl=%5Csqrt%7Bx%7D             f(x)=1/2https://www.google.com/chart?cht=tx&chf=bg,s,FFFFFF00&chco=000000&chl=%5Csqrt%7Bx%7D   x€]0;+ [

   5) F(x) =10x10        f(x)=200x19  

б) Найти первообразную для функции f(x):

    1) f(x)= x3 

    2) f(x) = x2

      3) f(x) = x

Историческая справка. 

Математический анализ имеет две главные составляющие его части: дифференциальное и интегральное исчисления. С элементами дифференциального исчисления мы познакомились в    10-м классе, впереди – изучение интегралов. 
 «Интеграл»- «интегрирование» - «интеграция»… Однокоренные слова, вышедшие за пределы математики и ставшие почти «обиходными». Пожалуй, нет другого математического термина, который использовался бы в обычной жизни так же часто, как термин «интеграл». Музыкальная группа «Интеграл», кафе «Под интегралом», банк «Интеграл-капитал», а слова «интегрирование» и «интеграция» встречаются на каждом шагу. В газетах мы читаем об интеграции наук, культур, интеграции экономики, политики также ведут речь об интеграционных процессах. Почему? Ведь есть масса других красивых математических слов: экспонента, логарифм, синус — звучит ничуть не хуже.

  Возможно, здесь играет свою роль красивый знак интеграла или понятный смысл слова: восстановление, целостность, суммирование.

   А быть может, привлекает некая таинственность интеграла? Непонятно, почему один и тот же математический инструмент позволяет находить и площади фигур, и формулу скорости по известной формуле ускорения. Почему операция, обратная дифференцированию, оказывается как-то связанной, скажем, с объёмами тел вращения? Конечно, доказаны все необходимые теоремы, но эта эффективность интеграла всё равно завораживает.

Слайд





























































Ученик уровня С

презентация

Конец урока

7. Итог урока. Рефлексия

Итог урока.  «Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию». Ян Амос Коменский

1) С какой операцией, обратной дифференцированию, познакомились;

2) вспоминаем определение первообразной.

Итак,  дифференцировать – значит «разделять» процесс, например, находить его мгновенную скорость в каждой отдельно взятой точке; интегрировать – значит «соединять», суммировать бесконечно малые части искомого целого. 
Таким образом, операции дифференцирования («разделения») и интегрирования («суммирования») оказываются взаимно обратными (как, например, сложение и вычитание, умножение и деление, возведение в степень и извлечение корня). 
Инструментом для вычисления интегралов служит понятие первообразной функции. Операция нахождения первообразной является обратной по отношению к операции дифференцирования функции. 
Овладев понятием первообразной функции, а затем и интеграла, мы сможем решать самые разнообразные алгебраические, геометрические и физические задачи. 

Рефлексия: Твое мнение об уроке?

Тренинг «Расскажи о себе, то о чем мы не знаем»



8. Домашнее задание.


§1, № 2 (нечетн), № 3(нечетн), 5 (1,3)





Общая информация

Номер материала: ДВ-479165

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.