Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / КТП 5 класс по Виленкину 5 часов 2015-2016г.

КТП 5 класс по Виленкину 5 часов 2015-2016г.

  • Математика

Название документа МОЯ ПЕРЕДЕЛКА РАБ ПРОГР ФГОС 5 КЛАСС2015-2016 (5 часов).doc

Поделитесь материалом с коллегами:


МБОУ «Утяшкинская основная общеобразовательная школа

Новошешминского муниципального района РТ»


Рассмотрено на заседании ШМО

Руководитель МО __________ ____

Сибгатуллина Т.С.

Протокол № __

от «___»_______________ 201___г.



«Согласовано»

Заместитель директора по УВР________________

Котова О.Н.

«__» ___________201__г.




«Утверждаю»

Директор школы _____________

Нотфуллина Э.Р.

Приказ № __

от «__» __________201__г.






РАБОЧАЯ ПРОГРАММА

по математике в 5 классе

Хасаншиной Ларисы Фаритовны,

учителя второй квалификационной категории





Рассмотрено на заседании

педагогического совета

протокол № __ от «____»_______ 201_г.



2015-2016 учебный год



Пояснительная записка

Данная рабочая программа по математике разработана на основе:

  1. Федеральный закон от 29 декабря 2012 г. N 273-ФЗ "Об образовании в Российской Федерации"

  2. Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897;

  3. Примерной программы по учебным предметам по математике. М.: Просвещение, 2011

  4. Примерной программы по математике для 5 класса по учебнику Н.Я.Виленкина, В.И.Жохова и др./ В.И.Жохов, М.: Мнемозина, 2010

  5. Требованиям примерной образовательной программы образовательного учреждения

  6. Устав школы.

  7. Локально-правовой акт МБОУ " Утяшкинской ООШ" о структуре и порядке утверждения рабочей прогаммы.

  8. Методические рекомендации по преподаванию математики в 2015-2016г.г.

Данная программа является рабочей программой по предмету «Математика» в 5 классе базового уровня.

Общая характеристика предмета

Математика играет важную роль в формировании у школьников умения учиться.

Обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а такжеявляются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.

Цели изучения:

  1. овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  2. интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  3. формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  4. воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

  5. систематическое развитие понятия числа;

  6. выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики;подготовка обучающихся к изучению систематических курсов алгебры и геометрии.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные преставления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Усвоенные знания и способы действий необходимы не толькодля дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.

Программа определяет ряд задач, решение которых направлено на достижение основных целей основного общего математического образования:

  1. Формировать элементы самостоятельной интеллектуальной деятельности на основе овладения математическими методами познания окружающего мира (умения устанавливать,описывать, моделировать и объяснять количественные и пространственные отношения);

  2. Развивать основы логического, знаково-символического и алгоритмического мышления; пространственного воображения;математической речи;умения вести поиск информации и работать с ней;

  3. Развивать познавательные способности;

  4. Воспитывать стремление к расширению математических знаний;

  5. Способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  6. Воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Решение названных задач обеспечит осознание школьниками универсальности математических способов познания мира, усвоение математических знаний, связей математики с окружающей действительностью и с другими школьными предметами, а также личностную заинтересованность в расширении математических знаний.

Общий курс математики является курсом интегрированным: в нём объединён арифметический, геометрический и алгебраический материал.

Содержание обучения представлено в программе разделами: «Числа и вычисления», «Выражения и их преобразования», «Уравнения и неравенства», «Геометрические фигуры и их свойства. Измерение геометрических величин».

Программа предусматривает дальнейшую работу с величинами (длина, площадь, масса, вместимость, время) и их измерением, с единицами измерения однородных величин и соотношениями между ними.

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит основным элементом для изучения смежных дисциплин.

В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. Все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология и т.д.).

Программой предусмотрено целенаправленное формирование совокупности умений работать с информацией. Эти умения формируются как на уроках, так и во внеурочной деятельностина факультативных и кружковых занятиях. Освоение содержания курса связано не только с поиском, обработкой, представлением новой информации, но и с созданием информационных объектов: стенгазет, книг, справочников. Новые информационные объекты создаются в основном в рамках проектной деятельности. Проектная деятельность позволяет закрепить, расширить и углубить полученные на уроках знания, создаёт условия для творческого развития детей, формирования позитивной самооценки, навыков совместной деятельности с взрослыми и сверстниками, умений сотрудничать друг с другом, совместно планировать свои действия и реализовывать планы, вести поиск и систематизировать нужную информацию.

Предметное содержание программы направлено на последовательное формирование и отработку универсальных учебных действий, развитие логического и алгоритмического мышления, пространственного воображения и математической речи.

Знание и понимание математических отношений и взаимозависимостей между различными объектами (соотношение целого и части, пропорциональные зависимости величин, взаимное расположение объектов в пространстве и др.), их обобщение и распространение на расширенную область приложений выступают как средство познания закономерностей, происходящих в природе и в обществе. Это стимулирует развитие познавательного интереса школьников, стремление к постоянному расширению знаний, совершенствованию освоенных способов действий.

Изучение математики способствует развитию алгоритмического мышления. Программа предусматривает формирование умений действовать по предложенному алгоритму, самостоятельно составлять план действий и следовать ему при решении учебных и практических задач, осуществлять поиск нужной информации, дополнять ею решаемую задачу, делать прикидку и оценивать реальность предполагаемого результата.

В процессе освоения программного материала школьники знакомятся с языком математики, осваивают некоторые математические термины, учатся высказывать суждения с использованием математических терминов и понятий, задавать вопросы по ходу выполнения заданий, обосновывать правильность выполненных действий, характеризовать результаты своего учебного труда и свои достижения в изучении этого предмета.

Овладение математическим языком, усвоение алгоритмов выполнения действий, умения строить планы решения различных задач и прогнозировать результат являются основой для формирования умений рассуждать, обосновывать свою точку зрения, аргументированно подтверждать или опровергать истинность высказанного предположения. Освоение математического содержания создаёт условия для повышения логической культуры и совершенствования коммуникативной деятельности учащихся.

Содержание программы предоставляет значительные возможности для развития умений работать в паре или в группе. Формированию умений распределять роли и обязанности, сотрудничать и согласовывать свои действия с действиями одноклассников, оценивать собственные действия и действия отдельных учеников (пар, групп) в большой степени способствует содержание, связанное с поиском и сбором информации.

Программа ориентирована на формирование умений использовать полученные знания для самостоятельного поиска новых знаний, для решения задач, возникающих в процессе различных видов деятельности, в том числе и в ходе изучения других школьных дисциплин.

Математические знания и представления о числах, величинах,
геометрических фигурах лежат в основе формирования общей картины мира и познания законов его развития. Именно эти знания и представления необходимы для целостного восприятия объектов и явлений природы, многочисленных памятников культуры, сокровищ искусства.

Обучение школьников математике на основе данной программы способствует развитию и совершенствованию основных познавательных процессов (включая воображение и мышление, память и речь). Дети научатся не только самостоятельно решать поставленные задачи математическими способами, но и описывать на языке математики выполненные действия и их результаты, планировать, контролировать и оценивать способы действий и сами действия, делать выводы и обобщения, доказывать их правильность. Освоение курса обеспечивает развитие творческих способностей, формирует интерес к математическим знаниям и потребность в их расширении, способствует продвижению учащихся в познании окружающего мира.

Содержание курса имеет концентрическое строение, отражающее последовательное расширение области чисел. Такая структура позволяет соблюдать необходимую постепенность в нарастании сложности учебного материала, создаёт хорошие условия для углубления формируемых знаний, отработки умений и навыков, для увеличения степени самостоятельности (при освоении новых знаний, проведении обобщений, формулировании выводов), для постоянного совершенствования универсальных учебных действий.

Структура содержания определяет такую последовательность изучения учебного материала, которая обеспечивает не только формирование осознанных и прочных, во многих случаях доведённых до автоматизма навыков вычислений, но и доступное для младших школьников обобщение учебного материала, понимание общих принципов и законов, лежащих в основе изучаемых математических фактов, осознание связей между рассматриваемыми явлениями. Сближенное во времени изучение связанных между собой понятий, действий, задач даёт возможность сопоставлять, сравнивать, противопоставлять их в учебном процессе, выявлять сходства и различия в рассматриваемых фактах.

Отбор материала обучения осуществляется на основе следующих дидактических принципов: систематизации знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для этого возраста; создание условий для понимания и осознания воспринимаемого материала.

На изучение математики в 5 классе отводится 5 ч в неделю,175 часов в год. В том числе 14 контрольных работ, включая итоговую контрольную работу. Уровень обучения – базовый.












Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

  1. Оценка письменных контрольных работ обучающихся по математике.

  2. Ответ оценивается отметкой «5», если:

  3. работа выполнена полностью;

  4. в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  5. в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

  6. Отметка «4» ставится в следующих случаях:

  7. работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  8. допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

  9. Отметка «3» ставится, если:

  10. допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

  11. Отметка «2» ставится, если:

  12. допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.


2. Оценка устных ответов обучающихся по математике

  1. Ответ оценивается отметкой «5», если ученик:

  2. полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  3. изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  4. правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  5. показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  6. продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  7. отвечал самостоятельно, без наводящих вопросов учителя;

  8. возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

  9. Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  10. в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  11. допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  12. допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

  13. Отметка «3» ставится в следующих случаях:

  14. неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  15. имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  16. ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  17. при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

  18. Отметка «2» ставится в следующих случаях:

  19. не раскрыто основное содержание учебного материала;

  20. обнаружено незнание учеником большей или наиболее важной части учебного материала;

  21. допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


3. Общая классификация ошибок.

  1. При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  1. незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  2. незнание наименований единиц измерения;

  3. неумение выделить в ответе главное;

  4. неумение применять знания, алгоритмы для решения задач;

  5. неумение делать выводы и обобщения;

  6. неумение читать и строить графики;

  7. неумение пользоваться первоисточниками, учебником и справочниками;

  8. потеря корня или сохранение постороннего корня;

  9. отбрасывание без объяснений одного из них;

  10. равнозначные им ошибки;

  11. вычислительные ошибки, если они не являются опиской;

  12. логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  1. неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  2. неточность графика;

  3. нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  4. нерациональные методы работы со справочной и другой литературой;

  5. неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  1. нерациональные приемы вычислений и преобразований;

  2. небрежное выполнение записей, чертежей, схем, графиков.
























Содержание тем учебного курса

1. Натуральные числа и шкалы (15 ч). Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Цель: систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Систематизация сведений о натуральных числах позволяет восстановить у обучающихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков.Рассматриваются простейшие комбинаторные задачи.В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче.

2. Сложение и вычитание натуральных чисел (21 ч).Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Цель: закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание).

3. Умножение и деление натуральных чисел (27 ч).Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач.

Цель: закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные обучающимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4. Площади и объемы (12 ч).Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.

Цель: расширить представления обучающихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

5. Обыкновенные дроби (23 ч).Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Цель: познакомить обучающихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от обучающихся.

6.Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч).Десятичная дробь. Сравнение, округление, слежение и вычитание десятичных дробей. Решение текстовых задач.

Цель: выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у обучающихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

7.Умножение и деление десятичных дробей (26 ч).Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Цель: выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8.Инструменты для вычислений и измерений (17 ч).Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла.Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Цель: сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

У обучающихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.Продолжается работа по распознаванию и изображению и геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы.Китовые диаграммы дают представления обучающимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий.

9. Повторение. Решение задач (14 ч).

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 5 класса.




ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ В 5 КЛАССЕ


В ходе преподавания математики в 5 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  1. планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  2. решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  3. исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  4. ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  5. проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  6. поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


Программа обеспечивает достижение обучающимися следующих личностных, метапредметных и предметных результатов.

Личностные результаты

  1. Чувство гордости за свою Родину, российский народ и историю России;

  2. Осознание роли своей страны в мировом развитии, уважительное отношение к семейным ценностям, бережное отношение к окружающему миру.

  3. Целостное восприятие окружающего мира.

  4. Развитую мотивацию учебной деятельности и личностного смысла учения, заинтересованность в приобретении и расширении знаний и способов действий, творческий подход к выполнению заданий.

  5. Рефлексивную самооценку, умение анализировать свои действия и управлять ими.

  6. Навыки сотрудничества со взрослыми и сверстниками.

  7. Установку наздоровый образ жизни, наличие мотивации к творческому труду, к работе на результат.


Метапредметные результаты

  1. Способность принимать и сохранять цели и задачи учебной деятельности, находитьсредства и способы её осуществления.

  2. Овладениеспособами выполнения заданий творческого и поискового характера.

  3. Умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями её выполнения, определять наиболее эффективные способы достижения результата.

  4. Способность использовать знаково-символические средства представления информации для создания моделей изучаемых объектов и процессов, схем решения учебно-познавательных и практических задач.

  5. Использование речевых средств и средств информационных и коммуникационных технологий для решения коммуникативных и познавательных задач.

  6. Овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления
    аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям.

  7. Готовность слушать собеседника и вести диалог; готовность признать возможность существования различных точек зрения и права каждого иметь свою; излагать своё мнение и аргументировать свою точку зрения.

  8. Определение общей цели и путей её достижения: умение договариваться о распределении функций и ролей в совместной деятельности, осуществлять взаимный контроль в совместной деятельности, адекватно оценивать собственное поведение и поведение окружающих.

  9. Овладение начальными сведениями о сущности и особенностях объектов и процессов в соответствии с содержанием учебного предмета «математика».

  10. Овладение базовыми предметными и межпредметными понятиями, отражающими существенные связи и отношения между объектами и процессами.


Предметные результаты

  1. Использование приобретённых математических знаний для описания и объяснения окружающих предметов, процессов, явлений, а также для
    оценки их количественных и пространственных отношений.

  2. Овладение основами логического и алгоритмического мышления,
    пространственного воображения и математической речи, основами счёта,измерения, прикидки результатаи его оценки, наглядного представления данных в разной форме (таблицы, схемы, диаграммы),записи и выполнения алгоритмов.

  3. Умения выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, выполнять и строить алгоритмы и стратегии в игре, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, представлять, анализировать и интерпретировать данные.

  4. Приобретение первоначальных навыков работы на компьютере (набирать текст на клавиатуре, работать с меню, находить информацию по заданной теме, распечатывать её на принтере).











В результате изучения курса математики 5 класс учащиеся должны:

знать/понимать

  1. существо понятия алгоритма; примеры алгоритмов;

  2. как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;

  3. как потребности практики привели математическую науку к необходимости расширения понятия числа;

уметь

  1. выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  2. переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов;

  3. выполнять арифметические действия с рациональными числами, находить значения числовых выражений;

  4. округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  5. пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  6. решать текстовые задачи, включая задачи, связанные дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  2. устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.












Учебно-методическое обеспечение:

  1. ФГОС_ОО. Утвержден приказом Министерства образования и науки РФ от 17.12.2010 №1897.

  2. Математика: Учеб. для 5 кл. общеобразоват. учреждений/ Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. -М.: Мнемозина, 2011.

  3. А.С. Чесноков, К.И. Нешков Дидактические материалы по математике 5 класс — М.: Просвещение, 2007—2008.

  4. Математика. 5 класс. Рабочая программа по учебнику Н.Я.Виленкина, В.И.Жохова и др. / Т.А.Лопатина, Г.С.Мещерякова., Учитель, 2014.

  5. Примерные программы по учебным предметам. Математика 5-9 классы. - М.: Просвещение, 2011.

  6. Жохов В.И. Математический тренажер. 5 класс. – М.: Мнемозина, 2012.

  7. Жохов В.И. Контрольные работы по математике. Пособие. 5 класс. – М.: Мнемозина, 2011.

  8. Попов М.А. Дидактические материалы по математике. 5 класс. К учебнику Н.Я.Виленкина и др. – Экзамен, 2012.

  9. Математика. 5 класс: рабочая программа по учебнику Н.Я.Виленкина, В.И.Жохова и др. / О.С.Кузнецова, Л.Н. Абознова и др. – Волгоград: Учитель, 2012



















п/п

Тема урока

Виды деятельности учащихся

Планируемые результаты

Дата план

Дата факт





Предметные

Личностные

Метапредметные




1

Обозначение натуральных чисел.


2

Обозначение натуральных чисел.


Обсуждение и выведение определения «натуральное число»; чтение чисел; запись чисел.

Читают и записывают многозначные числа

Выражать положительное отношение к процессу познания; применять правила делового сотрудничества; оценивать свою учебную деятельность

(Р) – Определение цели УД; работа по составленному плану. (П) – Передают содержание в сжатом виде. (К) – Уметь отстаивать точку зрения, аргументировать.










3

Отрезок. Длина отрезка. Треугольник

4

Отрезок. Длина отрезка. Треугольник

5

Отрезок. Длина отрезка. Треугольник


Обсуждение и выведение понятия «отрезок, концы отрезка, длина отрезка»; называние отрезков; изображение отрезка, запись точек.

Строят отрезок , называют его элементы, измеряют длину отрезка, выражают длину в различных единицах

Применяют правила делового сотрудничества; оценивание своей учебной деятельности; выражают положит. отношение к процессу познания

(Р) – Определение цели УД; работа по составленному плану. (П) – записывают правила «если…то…»; Передают содержание в сжатом виде. (К) – Уметь отстаивать точку зрения; работа в группе













6

Плоскость. Прямая. Луч


7

Плоскость. Прямая. Луч


Указание взаимного расположения прямой, луча, отрезка; запись чисел

Строят прямую, луч; называют точки, прямые, лучи, точки

выражают положит. отношение к процессу познания; дают адекватную оценку своей учебной деятельности

(Р) – работа по составленному плану; доп. источники информации. (П) – «если… то…». (К) – умеют слушать других, договариваться









8

Шкалы и координаты


9

Шкалы и координаты


10

Шкалы и координаты


Обсуждение понятий «штрих, деление, шкала»; устные вычисления; координаты точек.

Строят координатный луч, изображают точки на нём; единицы измерения

Осваивают роль обучающегося; дают адекватную оценку своей учебной деятельности; объясняют отличия в оценках ситуации разными людьми

(Р) – составление плана и работа по плану. (П) – делают предположения об инф-ции, нужной для решения учебной задачи. (К) – умеют договариваться, менять точку зрения













11

Меньше или больше


12

Меньше или больше

13

Меньше или больше


Выведение правил: какое из двух чисел больше; устные вычисления; изобр-е чисел на луче

Сравнивают числа по разрядам; записывают результат сравнения с помощью «>,<»

Проявляют познават. интерес к изучению предмета; применяют правила делового сотруднич-ва

(Р) – совершенствуют критерии оценки и самооценки. (П) – передают сод-е в сжатом или развернутом виде. (К) – оформление мысли в устной и письменной речи











14

к/р№ 1: Натуральные числа и шкалы

Решение к/р №1

Используют разные приемы проверки правильности выполняемых заданий

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, выход и этой ситуации. (П) – делают предположения об инф-ции. (К) –критично относятся к своему мнению





15

Сложение натуральных чисел и его свойства

16

Сложение натуральных чисел и его свойства

17

Сложение натуральных чисел и его свойства

18

Сложение натуральных чисел и его свойства

19

Сложение натуральных чисел и его свойства


Обсуждение названий компонентов и рез-тата сложения; сложение натуральных чисел; решение задач на сложение натуральных чисел.

Складывают натуральные числа; прогнозируют результат вычислений

Понимают причины успеха в учебной деятельности; проявляют познавательный интерес к учению; дают адекватную оценку своей деятельности

(Р) – определяют цель учебнойдеят-ти; работают по составленному плану. (П) – передают сод-е в развёрнутом или сжатом виде. (К) – умеют принимать точку зрения другого; умеют организовать учебное взаимодействие в группе
















20

Вычитание


21

Вычитание

22

Вычитание

23

Вычитание


Обсуждение названий компонентов и рез-тата вычитания; свойств вычитания; вычитание и сложение чисел; решение задач

Вычитают натуральные числа; прогнозируют рез-тат вычисления, выбирая удобный порядок

Понимают необходимость учения; объясняют отличия в оценках той или иной ситуации разными людьми

(Р) – определяют цель учения; работают по составленному плану. (П) –записывают выводы правил «если… то…». (К) – умеют организовать учебное взаимодействие в группе










24

к/р №2: Сложение и вычитание натуральных чисел

Решение к/р №2.

25

Числовые и буквенные выражения

26

Числовые и буквенные выражения

27

Числовые и буквенные выражения


Определение буквенного выражения; составление и запись буквенных выражений; нахождение значения буквенного выражения



Используют разные приемы проверки правильности ответа

Составляют и записывают буквенные выражения;


Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач



Проявляют положит-ноеотн-е к урокам математики, объясняют самому себе свои наиболее заметные достижения, оценивают свою познавательную деятельность

(Р) – обнаруживают и формулируют проблему вместе с учителем. (П) – делают предположение об инф-ции, необходимой для решения задачи. (К) – умеют принимать точку зрения других, договариваться



















28

Буквенная запись свойств сложения и вычитания.

29

Буквенная запись свойств сложения и вычитания.

30

Буквенная запись свойств сложения и вычитания.


Обсуждение и запись свойств сложения и вычитания с помощью букв; устные вычисления; упрощение выражений; нахождение значений выражения

Читают и записывают с помощью букв свойства сложения и вычитания; вычисляют числовое значение буквенного выражения

Дают положительную адекватную самооценку на основе заданных критериев успешности УД; проявляют познавательный интерес к предмету

(Р) – определяют цель УД; работают по составленному плану. (П) –передают содержание в сжатом или развернутом виде. (К) – умеют организовать учебное взаимодействие в группе; умеют принимать точку зрения других, договариваться, изменять свою точку зрения












31

Уравнение

32

Уравнение

33

Уравнение

34

Уравнение


35Обсуждение понятий «уравнение, корень уравнения, решить уравнение»; решение задач; решение уравненийРешают простейшие уравнения; составляют уравнение как математическую модель задачи

К/р №3: Числовые и буквенные выражения

Решение к/р №3.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению



36

Умножение натуральных чисел и его свойства

37

Умножение натуральных чисел и его свойства

38

Умножение натуральных чисел и его свойства

39

Умножение натуральных чисел и его свойства

40

Умножение натуральных чисел и его свойства

41

Умножение натуральных чисел и его свойства


Обсуждение и выведение правила умножения натуральных чисел, их свойств; устные вычисления; выполнение действий с применением свойств умножения; замена сложения умножением; решение задач различными способами

Находят и выбирают порядок действий; пошагово контролируют правильность вычислений; моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения

Объясняют отличия в оценках одной ситуации разными людьми; проявляют интерес к способам решения познавательных задач; дают положительную адекватную самооценку на основе заданных критериев успешности УД; проявляют познавательный интерес к предмету

(Р) – составляют план выполнения заданий вместе с учителем; работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи; записывают вывод «если… то…». (К) – умеют отстаивать свою точку зрения, приводить аргументы; принимать точку зрения другого; организовать учебное взаимодействие в группе



















42

Деление

43

Деление

44

Деление

45

Деление

46

Деление

47

Деление


Обсуждение и выведение правил нахождения делимого, делителя; деление натуральных чисел; решение задач с помощью уравнений;

Исследуют ситуации, требующие сравнения величин; решают простейшие уравнения; планируют решение задачи

Объясняют самому себе свои отдельные ближайшие цели саморазвития; проявляют устойчивый интерес к способам решения задач

(Р) – определяют цель УД, осуществляют средства её достижения. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других














48

Деление с остатком


49

Деление с остатком

50

Деление с остатком


Обсуждение и выведение правил деления с остатком; устные вычисления

Исследуют ситуации, требующие сравнения величин, их упорядочения;

Проявляют устойчивый интерес к способам решения задач; объясняют ход решения задачи

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – выводы «если… то…». (К) – умеют принимать точку зрения другого








51

К/р №4: Умножение и деление натуральных чисел

Решение к/р №4.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению



52

Упрощение выражений

53

Упрощение выражений

54

Упрощение выражений

55

Упрощение выражений

56

Упрощение выражений

57

Упрощение выражений


Обсужд-е и выведение распределительного свойства умнож-яотн-но сложения и вычитания; умножение натуральных чисел; решение уравнений и задач;

Применяют буквы для обозначения чисел; выбирают удобный порядок выполнения действий; составляют буквенные выражения

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД; осознают и принимают социальную роль ученика

(Р) –работают по составленному плану, используют дополнительную литературу. (П) – строятпредположения об информации, необходимой для решения предметной задачи. (К) – умеют слушать других; принимать точку зрения другого




















58

Порядок выполнения действий

59

Порядок выполнения действий


Обсужд-е и выведение правил выполнения действий; нахождение значения выражений

Действуют по самостоятельно выбранному алгоритму решения задач

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД;

(Р) – понимают причины своего неуспеха; выход из данной ситуации. (П) – передают сод-е в сжатом или развернутом виде. (К) – умеют слушать других;








60


Квадрат и куб числа


61


Квадрат и куб числа


62Обсуждение понятий «квадрат, куб, степень, основание, показатель степени»; составление таблицы квадратов и кубовКонтролируют правильность выполнения заданий


К/р №5: Упрощение выражений

Решение к/р №5.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению



63

Формулы


64


Формулы


Выведение формулы пути; ответы на вопросы; решение задач

Составляют буквенные выражения, находят значения выражений

Проявляют устойчивый интерес к способам решения познавательных задач; осознают и принимают социальную роль ученика

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – выводы «если… то…». (К) – умеют принимать точку зрения другого







65

Площадь. Формула площади прямоугольника

66


Площадь. Формула площади прямоугольника


Обсуждение и выведение формул площади прямоугольника и квадрата, всей фигуры; ответы на вопросы; решение задач

Описывают явления и события с использованием буквенных выражений; работают по составленному плану

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД; Объясняют себе свои наиболее заметные достижения

(Р) – работают по составленному плану. (П) – записывают выводы «если… то…». (К) – умеют высказывать свою точку зрения, оформлять свои мысли в устной и письменной речи







67

Единицы измерения площадей

68

Единицы измерения площадей

69

Единицы измерения площадей


Обсуждение понятий «квадратный метр, дециметр, ар, гектар»; ответы на вопросы; решение задач на нахождение площади

Переходят от одних единиц измерения к другим; решают житейские ситуации (планировка, разметка)

Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают социальную роль ученика

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого










70


Прямоугольный параллелепипед

Обсужд-е и называние граней, ребер, вершин;

Распознают на чертежах прямоугольный параллелепипед

дают положительную самооценку и оценку результатов УД;

(Р) – определяют цель УД, осуществляют средства её достижения. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других









71

Объёмы. Объём прямоугольного параллелепипеда

72

Объёмы. Объём прямоугольного параллелепипеда


Обсуждение понятий «кубический см, дм, км»; правила перевода литра в кубические метры; нахождение объёма пр/п;

Переходят от одних единиц измерения к другим; пошагово контролируют правильность и полноту выполнения

Проявляют положит-ноеотн-е к урокам математики, объясняют самому себе свои наиболее заметные достижения, оценивают свою познавательную деятельность

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению








73

Объёмы. Объём прямоугольного параллелепипеда

74

Объёмы. Объём прямоугольного параллелепипеда


75переход от одних единиц измерения к другим; решение задач практической направленностиалгоритма арифметического действия



Окружность и круг

Радиус окружности, центр круга, диаметр; построение окружности, круга

Изображают окружность, круг; наблюдают за изменением решения задач от условия

Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают социальную роль ученика

((Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого



76


Окружность и круг







77

К/р №6: Площади и объёмы


Радиус окружности, центр круга, диаметр; построение окружности, круга





Решение к/р №6.


Изображают окружность, круг; наблюдают за изменением решения задач от условия





Используют разные приемы проверки правильности ответа


Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают социальную роль ученика

Объясняют себе свои наиболее заметные достижения


(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого



Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению














79

Доли. Обыкновенные дроби

80

Доли. Обыкновенные дроби

81

Доли. Обыкновенные дроби

82

Доли. Обыкновенные дроби


Обсуждение того, что показывает числитель и знаменатель; ответы на вопросы; решение задач на нахождение числа по его дроби; нахождение дроби от числа; изображение геометрической фигуры, деление её на равные части


Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия; используют различные приёмы проверки правильности выполнения заданий

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД; Объясняют себе свои наиболее заметные достижения

(Р) – составляют план выполнения заданий вместе с учителем; работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи; записывают вывод «если… то…». (К) – умеют отстаивать свою точку зрения, приводить аргументы; принимать точку зрения другого; организовать учебное взаимодействие в группе
















83

Сравнение дробей


84

Сравнение дробей


85

Сравнение дробей


Изображение и выведение равных дробей на коорд.луче; сравнение обыкновенных дробей

Исследуют ситуации, требующие сравнения чисел, их упорядочения; сравнивают разные способы вычисления

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.

(Р) – определяют цель учебной деятельности; осущ-ют поиск средств её достижения. (П) – записывают выводы правил «если…, то…». (К) – умеют критично относиться к своему мнению; организовать взаимодействие в группе










86

Правильные и неправильные дроби

87

Правильные и неправильные дроби

88

Правильные и неправильные дроби


Какая дробь называется правильной, неправильной; запись правильных и неправильных дробей; решение задач величины данной дроби

Указывают правильные и неправильные дроби; выделяют целую часть из неправильной дроби;

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого










89


К/р №7: Обыкновенные дроби

Решение к/р №7.

90

Сложение и вычитание дробей с одинаковыми знаменателями

91

Сложение и вычитание дробей с одинаковыми знаменателями

92

Сложение и вычитание дробей с одинаковыми знаменателями


Обсуждение и выведение правил сложения (вычитания) дробей с одинаковыми знаменателями; решение задач на сложение и вычитание дробей с одинаковыми знаменателями; решение уравнений

Обнаруживают и устраняют ошибки логического (в ходе решения) и арифметического (в вычислении) характера; самостоятельно выбирают способ решения заданий

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.

93

Деление и дроби


94

Деление и дроби


Каким числом является частное, если деление выполнено нацело, не нацело

Записывают дробь в виде частного и частное в виде дроби

Проявляют положительное отношение к урокам математики; понимают причины успеха в своей УД.


Используют разные приемы проверки правильности ответаОбъясняют себе свои наиболее заметные достижения

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде; выводы правил «если…, то…». (К) – умеют слушать других; уважительно относиться к мнению других; умеют организовать взаимодействие в группе

(Р) – работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других.






















95

Смешанные числа



96

Смешанные числа


Выведение правил, что такое целая часть и дробная часть; запись смешанного числа в виде неправильной дроби

Представляют число в виде суммы его целой и дробной части; действуют со заданному и самостоятельно выбранному плану

Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают и принимают социальную роль ученика

(Р) – определяют цель УД, осуществляют средства её достижения. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других






97

Сложение и вычитание смешанных чисел

98

Сложение и вычитание смешанных чисел

99

Сложение и вычитание смешанных чисел


Обсуждение и выведение правил сложения и вычитания смешанных чисел; решение задач на сложение и вычитание смешанных чисел

Складывают и вычитают смешанные числа; используют математическую терминологию при записи и выполнении действия

Объясняют самому себе свои отдельные ближайшие цели саморазвития; проявляют устойчивый интерес к способам решения задач; Проявляют устойчивый интерес к способам решения познавательных задач;

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют уважительно относиться к мнению других











100

К/р №8: Сложение и вычитание дробей с одинаковыми знаменателями.

Решение к/р №8.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




101

Десятичная запись дробных чисел


102

Десятичная запись дробных чисел


Выведение правила короткой записи десятичной дроби; чтение и запись десятичных дробей

Читают и записывают десятичные дроби; прогнозируют результат вычислений

дают положительную самооценку и оценку результатов УД; Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач,

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют уважительно относиться к мнению других






103

Сравнение десятичных дробей

104

Сравнение десятичных дробей

105

Сравнение десятичных дробей


Выведение правил сравнения десятичных дробей; запись десятичной дроби с пятью (и более) знаками после запятой, равной данной

Исследуют ситуацию, требующую сравнения чисел, их упорядочения; сравнивают числа по классам и разрядам; объясняют ход решения задачи

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижения

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют уважительно относиться к мнению других










106

Сложение и вычитание десятичных дробей

107

Сложение и вычитание десятичных дробей

108

Сложение и вычитание десятичных дробей

109

Сложение и вычитание десятичных дробей

110

Сложение и вычитание десятичных дробей


Выведение правил сложения и вычитания десятичных дробей; что показывает каждая цифра после запятой. Сложение и вычитание десятичных дробей; решение задач на сложение и вычитание десятичных дробей

Складывают и вычитают десятичные дроби; используют математическую терминологию при записи и выполнении арифметического действия (сложения и вычитания)

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД; Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач,

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других
















111

Приближённые значения чисел. Округление чисел.


112

Приближённые значения чисел. Округление чисел.


Выведение правил округления чисел; запись натуральных чисел, между которыми расположены дес. дроби

Округляют числа до заданного разряда

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД;

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; умеют организовать взаимодействие в группе









113

К/р №9: Десятичные дроби. Сложение и вычитание десятичных дробей

Решение к/р №9.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




114

Умножение десятичных дробей на натуральное число

115

Умножение десятичных дробей на натуральное число

116

Умножение десятичных дробей на натуральное число


Обсуждение и выведение правил умножения дес. дроби на натуральное число, десятичной дроби на 10, 100, 1000 … запись произведения в виде суммы; запись суммы в виде произведения


Умножают десятичные числа на натуральное число; пошагово контролируют правильность выполнения арифметического действия


Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижени


117

Деление десятичной дроби на натуральное число

118

Деление десятичной дроби на натуральное число

119

Деление десятичной дроби на натуральное число

120

Деление десятичной дроби на натуральное число

121

Деление десятичной дроби на натуральное число


Обсуждение и выведение правил деления десятичной дроби на натуральное число, на 10, 100, 1000… Деление десятичных дробей на натуральные числа; запись обыкновенной дроби в виде десятичной; решение задач по теме деления десятичных дробей на натуральные числа


Делят десятичные дроби на натуральные числа; моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей учебной деятельности


(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других





(Р) – составляют план выполнения заданий вместе с учителем; работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи; записывают вывод «если… то…». (К) – умеют отстаивать свою точку зрения, приводить аргументы; принимать точку зрения другого; организовать учебное взаимодействие в группе









































122

К/р №10: Умножение и деление десятичных дробей

Решение к/р №10.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению























123

Умножение десятичных дробей

124

Умножение десятичных дробей

125

Умножение десятичных дробей

126

Умножение десятичных дробей

127

Умножение десятичных дробей


Обсуждение и выведение правил умножения на десятичную дробь, на 0,1, 0,01, 0,001, …; умножение десятичных дробей; решение задач на умножение десятичных дробей

Умножают десятичные дроби; решают задачи на умножение десятичных робей

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей учебной деятельности

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других
















128

Деление на десятичную дробь

129

Деление на десятичную дробь

130

Деление на десятичную дробь

131

Деление на десятичную дробь

132

Деление на десятичную дробь

133

Деление на десятичную дробь

134

Деление на десятичную дробь


135

Среднее арифметическое

136

Среднее арифметическое

137

Среднее арифметическое

138

Среднее арифметическое

Выведение правила деления десятичной дроби на десятичную дробь; как разделить десятичную дробь на 0,1, 0,01, 0,001…; ответы на вопросы; решение задач на деление десятичных дробейДелят на десятичную дробь; решают задачи на деление на десятичную дробь; действуют по составленному плану решения заданий

Какое число называют средним арифметическим чисел; правила нахождения среднего арифметического

Используют математическую терминологию при записи и выполнении арифметического действия

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей учебной деятельности

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; умеют организовать взаимодействие в группе













139

К/р №11: Умножение и деление десятичных дробей

Решение к/р №11.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению



140

Микрокалькулятор



141

Микрокалькулятор


Ответы на вопросы; чтение показаний на индикаторе

Планируют решение задачи

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей учебной деятельности

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению








142

Проценты

143

Проценты

144

Проценты

145

Проценты

146

Проценты


Обсуждение вопросов что называют процентом; как обратить дробь в проценты и наоборот; запись в процентах

Записывают проценты в виде десятичных дробей, и наоборот; обнаруживают и устраняют ошибки в вычислениях

Объясняют отличия в оценках той или иной ситуации разными людьми; проявляют положительное отношение к результатам своей учебной деятельности

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; умеют организовать взаимодействие в группе












147

К/р №12: Инструменты для вычислений и измерений

Решение к/р №12.

148

Угол. Прямой и развёрнутый углы. Чертёжный треугольник

149

Угол. Прямой и развёрнутый углы. Чертёжный треугольник

150

Угол. Прямой и развёрнутый углы. Чертёжный треугольник

Используют разные приемы проверки правильности ответаОбъясняют себе свои наиболее заметные достижения

Обсуждение и объяснение что такое угол; какой угол называется прямым, тупым, острым, развернутым; определение видов углов; построение углов и запись их значений

Моделируют разнообразные ситуации расположения объектов на плоскости; определяют геометрические фигуры

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД;

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других












151

Измерение углов. Транспортир

152

Измерение углов. Транспортир

153

Измерение углов. Транспортир


Для чего служит транспортир; как пользоваться транспортиром; построение и измерение углов, треугольников

Определяют виды углов, действуют по заданному плану, самостоятельно выбирают способ решения задач

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижения


(Р) – работают по составленному плану, используют дополнительную литературу. (П) – строят предположения об информации, необходимой для решения предметной задачи. (К) – умеют слушать других; принимать точку зрения другого










154

Круговые диаграммы



155

Круговые диаграммы


Обсуждение понятия круговая диаграмма; построение диаграмм

Наблюдают за изменением решения задач при изменении условия

Проявляют устойчивый широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению








156

К/р №13: Инструменты для вычислений и измерений

Решение к/р №13.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению



157


Натуральные числа и шкалы

Запись с помощью букв свойств сложения, вычитания, умножения, деления с остатком

Читают и записывают многозначные числа; строят координатный луч; координаты точки

Дают адекватную самооценку результатам своей УД; проявляют познавательный интерес к изучению предмета

(Р) – работают по составленному плану; (П) – передают содержание в сжатом или развернутом виде; (К) – умеют принимать точку зрения другого









158

Сложение и вычитание натуральных чисел

159

Сложение и вычитание натуральных чисел


Устные вычисления; ответы на вопросы; нахождение буквенного выражения

Действуют по заданному и самостоятельно составленному плану

Проявляют мотивы УД; дают оценку результатам своей УД; применяют правила делового сотрудничества

(Р) – работают по составленному плану; (П) – передают содержание в сжатом или развернутом виде; (К) – умеют высказывать точку зрения








160

Умножение и деление натуральных чисел


161

Умножение и деление натуральных чисел


162Устные вычисления; решение задач на умножение и деление натуральных чиселПошагово контролируют ход выполнения заданий



Площади и объемы

Ответы на вопросы; решение задач на нахождение площади и объема

Самостоятельно выбирают способ решения задач

Дают адекватную оценку результатам своей УД; проявляют познавательный интерес к изучению предмета

(Р) – работают по составленному плану. (П) – выводы правил «если…, то…». (К) – умеют слушать других; уважительно относиться к мнению других; умеют организовать взаимодействие в группе



163

Обыкновенные дроби


164


Обыкновенные дроби


Выделение целой части из смешанного числа; сложение и вычитание смешанных чисел

Исследуют ситуации, требующие сравнения чисел, их упорядочения

Проявляют положительное отношение к урокам математики, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению








165

Сложение и вычитание десятичных дробей

166

Сложение и вычитание десятичных дробей


Сложение и вычитание десятичных дробей; нахождение значения буквенного выражения

Прогнозируют результат своих вычислений

Дают адекватную оценку результатам своей УД; проявляют познавательный интерес к изучению предмета

(Р) – работают по составленному плану; (П) – передают содержание в сжатом или развернутом виде; (К) – умеют высказывать точку зрения







167

Умножение и деление десятичных дробей

168

Умножение и деление десятичных дробей


Умножение и деление десятичных дробей4 нахождение значений буквенных выражений

Прогнозируют результат своих вычислений

Дают адекватную оценку результатам своей УД; проявляют познавательный интерес к изучению предмета

(Р) – работают по составленному плану; (П) – передают содержание в сжатом или развернутом виде; (К) – умеют высказывать точку зрения







169



Инструменты для вычислений и измерений

Выполнение рисунков; док-во равенства углов

Находят геометрические фигуры

Проявляют положительное отношение к урокам математики, понимают причины успеха в своей УД.

(Р) – работают по составленному плану. (П) – выводы правил «если…, то…». (К) – умеют слушать других; уважительно относиться к мнению других; умеют организовать взаимодействие в группе



170

Итоговая контрольная работа

Решение итоговой контрольной работы

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению


















ОБЩЕ0БРАЗОВАТЕЛЬНАЯ ПРОГРАММА

ПО МАТЕМАТИКЕ 5—9 КЛАССЫ


Структура программы

Программа основного общего образования по математике содержит следующие разделы:
- пояснительную записку, в которой определяются цели обучения математике в основной школе, раскрываются особенности содержания математического образования на этой ступени, описывается место предметов математического цикла в Базисном учебном (образовательном) плане;

- содержание курса, включающее перечень основного изучаемого материала, распределенного по содержательным разделам с указанием примерного числа часов на изучение соответствующего материала;

- тематическое планирование с описанием видов учебной деятельности учащихся 5–9 классов и указанием примерного числа часов на изучение соответствующего материала;
-рекомендации по оснащению учебного процесса;

- планируемые результаты.

- критерии оценивания


Пояснительная записка

Программа составлена на основе

  1. Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от 17.12. 2010г. №1897

  2. Учебного плана МБОУ «Основная общеобразовательная школа №13» х. Михайлов ;

  3. Примерной программы по математике 5-9 классы разработанной А.А.Кузнецовым, М.В. Рыжаковым, А.М.Кондаковым.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

I В направлении личностного развития:

  1. формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  2. развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  3. формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  4. воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  5. формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  6. развитие интереса к математическому творчеству и математических способностей;

II В метапредметном направлении:

  1. развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  2. формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

III В предметном направлении:

овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Задачи:

  1. овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  2. способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  3. формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  4. воспитывать культуру личности, отношение к математики как части общечеловеческой культуры, играющей особую роль в общественном развитии.



Содержание математического образования


Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика»обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.



Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль, как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В после школьной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.



Место учебного предмета в Базисном учебном

(образовательном) плане


Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 875 уроков.

Согласно Базисного учебного (образовательного) плана в 5—6 классах изучается предмет «Математика» (интегрированный предмет), в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)

Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функции, элементы вероятностно-статистической линии, а также геометрический материал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Раздел «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.










Результаты изучения учебного предмета

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

I В личностном направлении:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной

речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить

примеры и контрпримеры;

  1. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  2. представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  3. креативность мышления, инициатива, находчивость, активность при решении математических задач;

  4. умение контролировать процесс и результат учебной математической деятельности;

  5. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

I I В метапредметном направлении:

  1. первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

  2. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  3. умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  4. умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  5. умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

  6. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  7. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  8. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  9. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Ш В предметном направлении:

  1. овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  2. умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;

  3. умение проводить классификации, логические обоснования, доказательства математических утверждений;

  4. умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

  5. развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;

  6. овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

  7. овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;

  8. овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

  9. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

  10. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

  11. умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

  12. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.



















Планируемые результаты изучения учебного предмета, курса

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

понимать особенности десятичной системы счисления;

оперировать понятиями, связанными с делимостью натуральных чисел;

выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

познакомиться с позиционными системами счисления с основаниями, отличными от 10;

углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

использовать начальные представления о множестве действительных чисел;

оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.



Алгебраические выражения

Выпускник научится:

оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

понимать и использовать функциональные понятия и язык (термины, символические обозначения);

строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

понимать и использовать язык последовательностей (термины, символические обозначения);

применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

строить развёртки куба и прямоугольного параллелепипеда;

определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

углубить и развить представления о пространственных геометрических фигурах;

научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры


Выпускник научится:

пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

научиться решать задачи на построение методом геометрического места точек и методом подобия;

приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин


Выпускник научится:

использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

вычислять длину окружности, длину дуги окружности;

вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

овладеть координатным методом решения задач на вычисления и доказательства;

приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

овладеть векторным методом для решения задач на вычисления и доказательства;

приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».


Содержание основного общего образования по учебному предмету

АРИФМЕТИКА 250ч.

Натуральные числа.

Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби.

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Проценты; нахождение процентов от величины и величины по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа.

Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где т — целое число, п — натуральное число. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа.

Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки.

Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя степени 10 в записи числа.

Приближенное значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.


АЛГЕБРА 200ч.

Алгебраические выражения.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка

выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разложение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения.

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства.

Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ 65ч.

Основные понятия.

Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функции у = I x I

Числовые последовательности.

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой л-го члена.

Арифметическая и геометрическая прогрессии. Формулы л-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА 50ч

Описательная статистика.

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность.

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика.

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ГЕОМЕТРИЯ 210ч.

Наглядная геометрия

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры.

Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин.

Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты.

Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы.

Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

ЛОГИКА И МНОЖЕСТВА (10 ч)

Теоретико-множественные понятия.

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики.

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок, если то в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа л. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Софизмы, парадоксы.








Тематическое планирование

с определением основных видов учебной деятельности и метапредметных умений и навыков

МАТЕМАТИКА

5—6 классы (350 ч)


Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Метапредметные умения и навыки

1

2

3

  1. Натуральные числа (50ч)


Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Понятие о степени с натуральным показателем.

Квадрат и куб числа.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок.

Решение текстовых задач арифметическими способами.

Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком

Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Выполнять вычисления с натуральными числами; вычислять значения степеней.

Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости.

Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.).

Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.


  1. Дроби (120 ч)


Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Отношение. Пропорция; основное свойство пропорции.

Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах.

Решение текстовых задач арифметическими способами

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями.

Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений.

Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике.

Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропорции при решении задач.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты том числе с использованием калькулятора, компьютера)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;


  1. Рациональные числа (40 ч)


Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.

Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш — проигрыш, выше — ниже уровня моря и т. п.).

Изображать точками координатной прямой положительные и отрицательные рациональные числа.

Характеризовать множество целых чисел, множество рациональных чисел.

Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;



4. Измерения, приближения, оценки. Зависимости между величинами

(20 ч)

Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам.

Решение текстовых задач арифметическими способами

Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т. п.) при решении текстовых задач

Уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни

5. Элементы алгебры (25 ч)

Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения.

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости

Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.

Вычислять числовое значение буквенного выражения при заданных значениях букв.

Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;




6. Описательная статистика. Вероятность. Комбинаторика. Множества

(20 ч)

Представление данных в виде таблиц, диаграмм.

Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов.

Решение комбинаторных задач перебором вариантов

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.

Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни.

Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки

7. Наглядная геометрия (45 ч)

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников.

Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда и объем куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур







Распознавать на чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.

Измерять с помощью инструментов и сравнивать длины отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника.

Выражать одни единицы измерения площади через другие.

Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид.

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.

Находить в окружающем мире плоские и пространственные симметричные фигуры.

Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Изображать равные фигуры, симметричные фигуры

Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;























































Тематическое планирование

Математика 7-9 классы ( 525ч)

Раздел «Алгебра»

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Метапредметные умения и навыки

1

2

3

  1. Действительные числа (15 ч)


Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение т/п, где т — целое число, а п — натуральное число.

Степень с целым показателем. Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.

Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч

Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.

Формулировать определение корня третьей степени; находить значения кубических корней, при необходимости используя, калькулятор.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой.

Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа.

Описывать множество действительных чисел.

Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику

Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

Умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации.



  1. Измерения, приближения, оценки (10 ч)


Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире.

Сравнивать числа и величины, записанные с использованием степени 10.

Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.

Выполнять вычисления с реальными данными.

Выполнять прикидку и оценку результатов вычислений


Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Выполнять вычисления с реальными данными.


  1. Введение в алгебру (8 ч)


Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении

Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.


  1. Многочлены (45ч)


Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.

Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители



Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.

Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.


  1. Алгебраические дроби (22 ч)


Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.

Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.

Выполнять действия с алгебраическими дробями.

Представлять целое выражение в виде многочлена, дробное — в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым показателем.

Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;


  1. Квадратные корни ( 12ч)


Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произведения, частного, степени; тождества, = а, где а

= Применение свойств арифметических квадратных корней для преобразования числовых выражений и вычислений

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений.

Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.

Исследовать уравнение вида х2 = а; находить точные и приближенные корни при

а > 0

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характер.



  1. Уравнения с одной переменной (38 ч)


Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Решение уравнений, сводящихся к линейным.

Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение.

Примеры решения уравнений третьей и четвертой степени разложением на множители.

Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом

Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения.

Исследовать квадратные уравнения по дискриминанту и коэффициентам.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

  1. Системы уравнений (30ч)


Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.

График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.

Графики простейших нелинейных уравнений (парабола, гипербола, окружность).

Графическая интерпретация системы уравнений с двумя переменными

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.

Строить графики уравнений с двумя переменными.

Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений

Использовать функционально-графические представления для решения и исследования уравнений и систем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.

  1. Неравенства (20ч)


Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.

Системы линейных неравенств с одной переменной

Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач.

Распознавать линейные и квадратные неравенства.

Решать линейные неравенства, системы линейных неравенств.

Решать квадратные неравенства на основе графических представлений

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.




  1. Зависимости между величинами (15 ч)

Зависимость между величинами.

Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей.

Решение задач на прямую пропорциональность и обратную пропорциональную зависимости

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.

Распознавать прямую и обратную пропорциональные зависимости.

Решать текстовые задачи на прямую и обратную пропорциональные зависимости том числе с контекстом из смежных дисциплин, из реальной жизни)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;



  1. Числовые функции (35ч)


Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.

Линейная функция, ее график и свойства.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций

;

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков изучаемых функций в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; описывать их

свойства

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

  1. Числовые последовательности. Арифметическая и геометрическая прогрессии (15ч)


Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой п-го члена или рекуррентной формулой.

Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов.

Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания.

Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики использованием калькулятора)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


  1. .Описательная статистика (10 ч)


Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические

характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон)

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


  1. Случайные события и вероятность (15 ч)


Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности


Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий.

Приводить примеры равновероятных событий

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.




  1. Элементы комбинаторики (10 ч)


Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал

-

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с применением комбинаторики

Понимать и использовать математические средства наглядности схемы для иллюстрации, интерпретации

  1. Множества. Элементы логики (5 ч)


Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Понятия о равносильности, следовании, употребление логических связок если то, в том и только том случае. Логические связки и, или

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.

Конструировать математические предложения с помощью связок если то, в том и только том случае, логических связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.


Резерв-10ч



Раздел « Геометрия»



  1. Прямые и углы (20ч)



Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Свойства биссектрисы угла и серединного перпендикуляра к отрезку.


Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи.


Уметь находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, понимать и использовать математические средства наглядности (чертежи) для иллюстрации, интерпретации.











2.Треугольники (65ч.)


Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот и их продолжений

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.

Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников.

Объяснять и иллюстрировать неравенство треугольника.

Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.

Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°.

Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов.

Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла.

Формулировать и доказывать теоремы синусов и косинусов.

Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.




3. Четырёхугольники (20ч)


Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедренная трапеция

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.

Исследовать свойства четырехугольников с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



4. Многоугольники (10ч)


Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.

Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.

Исследовать свойства многоугольников с помощью компьютерных программ.

Решать задачи на доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



5. Окружность и круг (20ч)


Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.

Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Вписанные и описанные окружности правильного многоугольника.

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.

Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников;

окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.

Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



6 Геометрические преобразования (10ч)


Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.

Исследовать свойства движений с помощью компьютерных программ.

Выполнять проекты по темам геометрических преобразований на плоскости

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



  1. Построения с помощью циркуля и линейки (5ч)


Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей

Решать задачи на построение с помощью циркуля и линейки.

Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры.

Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.


  1. Измерение геометрических величин (25ч)


Длина отрезка. Длина ломаной. Периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, градусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы.

Использовать формулы для обоснования доказательных рассуждений в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов


  1. Координаты (10ч)


Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов


  1. Векторы (10ч)


Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение вектор

Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.

Вычислять длину и координаты вектора.

Находить угол между векторами.

Выполнять операции над векторами.

Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства

Умение понимать и использовать математические средства наглядности.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;


  1. Элементы логики ( 5ч)


Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример

Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы

Умение понимать и использовать математические средства наглядности.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;



  1. Резерв времени - 10ч






Описание учебно-методического и материально-технического обеспечения образовательного процесса

1.Нормативные документы: Примерная программа основного общего образования по математике

2.Учебники: по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7—9 классов.

  1. УМК Н.Я.Виленкин «Математика» 5,6

  2. УМК Ю.Н.Макарычев « Алгебра» 7-9

  3. УМК Л.С.Атанасян «Геометрия 7-9»

3.Научная, научно-популярная, историческая литература.

4.Справочные пособия (энциклопедии, словари, справочники по
математике и т.п.).

5.Печатные пособия: Портреты выдающихся деятелей математики.

6.Информационные средства

  1. Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.

  2. Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

7.Технические средства обучения

  1. Мультимедийный компьютер.

  2. Мультимедийный проектор.

  3. Экран навесной.

8. Учебно-практическое и учебно-лабораторное оборудование

  1. Доска магнитная .

  2. Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.

  3. Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных).

  4. Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).






Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

 Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.

Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.

Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.

Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

• повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);

• высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:

• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);

• низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:

• первичному ознакомлению, отработке и осознанию теоретических моделей и понятий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;

• выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;

• выявлению и анализу существенных и устойчивых связей и отношений между объектами и процессами.

При этом обязательными составляющими системы накопленной оценки являются материалы:

• стартовой диагностики;

• тематических и итоговых проверочных работ по всем учебным предметам;

•  творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.

















Уровни подготовки учащихся и критерии успешности обучения по математике

Уровни

Оценка

Теория

Практика

1

Узнавание

Алгоритмическая деятельность с подсказкой

 

 

«3»

Распознавать объект, находить нужную формулу, признак, свойство и т.д.

Уметь выполнять задания по образцу, на непосредственное применение формул, правил, инструкций и т.д.

2

Воспроизведение

Алгоритмическая деятельность без подсказки

 

 

«4»

Знать формулировки всех понятий, их свойства, признаки, формулы.

Уметь воспроизвести доказательства, выводы, устанавливать взаимосвязь, выбирать нужное для выполнения данного задания

Уметь работать с учебной и справочной литературой, выполнять задания, требующие несложных преобразований с применением изучаемого материала

3

Понимание

Деятельность при отсутствии явно выраженного алгоритма

 

 

«5»

Делать логические заключения, составлять алгоритм, модель несложных ситуаций

Уметь применять полученные знания в различных ситуациях. Выполнять задания комбинированного характера, содержащих несколько понятий.

4

Овладение умственной самостоятельностью

Творческая исследовательская деятельность

 

 

 

«5»

В совершенстве знать изученный материал, свободно ориентироваться в нем. Иметь знания из дополнительных источников. Владеть операциями логического мышления. Составлять модель любой ситуации.

Уметь применять знания в любой нестандартной ситуации. Самостоятельно выполнять творческие исследовательские задания. Выполнять функции консультанта.

 



Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.


1. Оценка письменных контрольных работ обучающихся по математике.

Отметка «5», если:

  1. работа выполнена полностью;

  2. в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  3. в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  1. работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  2. допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  1. допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  1. допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  1. работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  1. полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  2. изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  3. правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  4. показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  5. продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  6. отвечал самостоятельно, без наводящих вопросов учителя;

  7. возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  1. в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  2. допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  3. допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  1. неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  2. имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  3. ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  4. при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  1. не раскрыто основное содержание учебного материала;

  2. обнаружено незнание учеником большей или наиболее важной части учебного материала;

  3. допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  1. ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.






Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

  1. незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  2. незнание наименований единиц измерения;

  3. неумение выделить в ответе главное;

  4. неумение применять знания, алгоритмы для решения задач;

  5. неумение делать выводы и обобщения;

  6. неумение читать и строить графики;

  7. неумение пользоваться первоисточниками, учебником и справочниками;

  8. потеря корня или сохранение постороннего корня;

  9. отбрасывание без объяснений одного из них;

  10. равнозначные им ошибки;

  11. вычислительные ошибки, если они не являются опиской;

  12. логические ошибки.

К негрубым ошибкам следует отнести:

  1. неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  2. неточность графика;

  3. нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  4. нерациональные методы работы со справочной и другой литературой;

  5. неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

  1. нерациональные приемы вычислений и преобразований;

  2. небрежное выполнение записей, чертежей, схем, графиков.


Контроль ЗУН предлагается при проведении математических диктантов, практических работ, самостоятельных работ обучающего и контролирующего вида, контрольных работ.






Название документа взято на печать 5 класс.docx

Поделитесь материалом с коллегами:

МБОУ «Утяшкинская общеобразовательная школа

Новошешминского муниципального района РТ»


Рассмотрено на заседании ШМО

Руководитель МО __________ ____

Сибгатуллина Т.С.

Протокол № __

от «___»_______________ 201___г.



«Согласовано»

Заместитель директора по УВР________________

Котова О.Н.

«__» ___________201__г.




«Утверждаю»

Директор школы _____________

Нотфуллина Э.Р.

Приказ № __

от «__» __________201__г.






РАБОЧАЯ ПРОГРАММА

по математике в 7 классе

Хасаншиной Ларисы Фаритовны,

учителя первой квалификационной категории





Рассмотрено на заседании

педагогического совета

протокол № __ от «____»_______ 201_г.



2015-2016 учебный год



Пояснительная записка

Данная рабочая программа по математике разработана на основе:

  • Федеральный закон от 29 декабря 2012 г. N 273-ФЗ "Об образовании в Российской Федерации"

  • Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897;

  • Примерной программы по учебным предметам по математике. М.: Просвещение, 2011

  • Примерной программы по математике для 5 класса по учебнику Н.Я.Виленкина, В.И.Жохова и др./ В.И.Жохов, М.: Мнемозина, 2010

  • Требованиям примерной образовательной программы образовательного учреждения

  • Устав школы.

  • Локально-правовой акт МБОУ " Утяшкинской ООШ" о структуре и порядке утверждения рабочей прогаммы.

  • Методические рекомендации по преподаванию математики в 2015-2016г.г.

Данная программа является рабочей программой по предмету «Математика» в 5 классе базового уровня.

Общая характеристика предмета

Математика играет важную роль в формировании у школьников умения учиться.

Обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а такжеявляются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.

Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

  • систематическое развитие понятия числа;

  • выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики;подготовка обучающихся к изучению систематических курсов алгебры и геометрии.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные преставления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Усвоенные знания и способы действий необходимы не толькодля дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.

Программа определяет ряд задач, решение которых направлено на достижение основных целей основного общего математического образования:

  • Формировать элементы самостоятельной интеллектуальной деятельности на основе овладения математическими методами познания окружающего мира (умения устанавливать,описывать, моделировать и объяснять количественные и пространственные отношения);

  • Развивать основы логического, знаково-символического и алгоритмического мышления; пространственного воображения;математической речи;умения вести поиск информации и работать с ней;

  • Развивать познавательные способности;

  • Воспитывать стремление к расширению математических знаний;

  • Способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • Воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Решение названных задач обеспечит осознание школьниками универсальности математических способов познания мира, усвоение математических знаний, связей математики с окружающей действительностью и с другими школьными предметами, а также личностную заинтересованность в расширении математических знаний.

Общий курс математики является курсом интегрированным: в нём объединён арифметический, геометрический и алгебраический материал.

Содержание обучения представлено в программе разделами: «Числа и вычисления», «Выражения и их преобразования», «Уравнения и неравенства», «Геометрические фигуры и их свойства. Измерение геометрических величин».

Программа предусматривает дальнейшую работу с величинами (длина, площадь, масса, вместимость, время) и их измерением, с единицами измерения однородных величин и соотношениями между ними.

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит основным элементом для изучения смежных дисциплин.

В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. Все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология и т.д.).

Программой предусмотрено целенаправленное формирование совокупности умений работать с информацией. Эти умения формируются как на уроках, так и во внеурочной деятельности — на факультативных и кружковых занятиях. Освоение содержания курса связано не только с поиском, обработкой, представлением новой информации, но и с созданием информационных объектов: стенгазет, книг, справочников. Новые информационные объекты создаются в основном в рамках проектной деятельности. Проектная деятельность позволяет закрепить, расширить и углубить полученные на уроках знания, создаёт условия для творческого развития детей, формирования позитивной самооценки, навыков совместной деятельности с взрослыми и сверстниками, умений сотрудничать друг с другом, совместно планировать свои действия и реализовывать планы, вести поиск и систематизировать нужную информацию.

Предметное содержание программы направлено на последовательное формирование и отработку универсальных учебных действий, развитие логического и алгоритмического мышления, пространственного воображения и математической речи.

Знание и понимание математических отношений и взаимозависимостей между различными объектами (соотношение целого и части, пропорциональные зависимости величин, взаимное расположение объектов в пространстве и др.), их обобщение и распространение на расширенную область приложений выступают как средство познания закономерностей, происходящих в природе и в обществе. Это стимулирует развитие познавательного интереса школьников, стремление к постоянному расширению знаний, совершенствованию освоенных способов действий.

Изучение математики способствует развитию алгоритмического мышления. Программа предусматривает формирование умений действовать по предложенному алгоритму, самостоятельно составлять план действий и следовать ему при решении учебных и практических задач, осуществлять поиск нужной информации, дополнять ею решаемую задачу, делать прикидку и оценивать реальность предполагаемого результата.

В процессе освоения программного материала школьники знакомятся с языком математики, осваивают некоторые математические термины, учатся высказывать суждения с использованием математических терминов и понятий, задавать вопросы по ходу выполнения заданий, обосновывать правильность выполненных действий, характеризовать результаты своего учебного труда и свои достижения в изучении этого предмета.

Овладение математическим языком, усвоение алгоритмов выполнения действий, умения строить планы решения различных задач и прогнозировать результат являются основой для формирования умений рассуждать, обосновывать свою точку зрения, аргументированно подтверждать или опровергать истинность высказанного предположения. Освоение математического содержания создаёт условия для повышения логической культуры и совершенствования коммуникативной деятельности учащихся.

Содержание программы предоставляет значительные возможности для развития умений работать в паре или в группе. Формированию умений распределять роли и обязанности, сотрудничать и согласовывать свои действия с действиями одноклассников, оценивать собственные действия и действия отдельных учеников (пар, групп) в большой степени способствует содержание, связанное с поиском и сбором информации.

Программа ориентирована на формирование умений использовать полученные знания для самостоятельного поиска новых знаний, для решения задач, возникающих в процессе различных видов деятельности, в том числе и в ходе изучения других школьных дисциплин.

Математические знания и представления о числах, величинах,
геометрических фигурах лежат в основе формирования общей картины мира и познания законов его развития. Именно эти знания и представления необходимы для целостного восприятия объектов и явлений природы, многочисленных памятников культуры, сокровищ искусства.

Обучение школьников математике на основе данной программы способствует развитию и совершенствованию основных познавательных процессов (включая воображение и мышление, память и речь). Дети научатся не только самостоятельно решать поставленные задачи математическими способами, но и описывать на языке математики выполненные действия и их результаты, планировать, контролировать и оценивать способы действий и сами действия, делать выводы и обобщения, доказывать их правильность. Освоение курса обеспечивает развитие творческих способностей, формирует интерес к математическим знаниям и потребность в их расширении, способствует продвижению учащихся в познании окружающего мира.

Содержание курса имеет концентрическое строение, отражающее последовательное расширение области чисел. Такая структура позволяет соблюдать необходимую постепенность в нарастании сложности учебного материала, создаёт хорошие условия для углубления формируемых знаний, отработки умений и навыков, для увеличения степени самостоятельности (при освоении новых знаний, проведении обобщений, формулировании выводов), для постоянного совершенствования универсальных учебных действий.

Структура содержания определяет такую последовательность изучения учебного материала, которая обеспечивает не только формирование осознанных и прочных, во многих случаях доведённых до автоматизма навыков вычислений, но и доступное для младших школьников обобщение учебного материала, понимание общих принципов и законов, лежащих в основе изучаемых математических фактов, осознание связей между рассматриваемыми явлениями. Сближенное во времени изучение связанных между собой понятий, действий, задач даёт возможность сопоставлять, сравнивать, противопоставлять их в учебном процессе, выявлять сходства и различия в рассматриваемых фактах.

Формы организации образовательного процесса

Отбор материала обучения осуществляется на основе следующих дидактических принципов: систематизации знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для этого возраста; создание условий для понимания и осознания воспринимаемого материала.

На изучение математики в 5 классе отводится 5 ч в неделю,175 часов в год. В том числе 14 контрольных работ, включая итоговую контрольную работу. Уровень обучения – базовый.


Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

  • Оценка письменных контрольных работ обучающихся по математике.

  • Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

  • Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

  • Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

  • Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.


2. Оценка устных ответов обучающихся по математике

  • Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

  • Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

  • Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

  • Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


3. Общая классификация ошибок.

  • При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • неумение пользоваться первоисточниками, учебником и справочниками;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из них;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.


Учебно-тематический план


п/п

Изучаемый материал

Кол-во часов

Контрольные работы


Глава 1. Натуральные числа

76


1.

Натуральные числа и шкалы

15

1

2.

Сложение и вычитание натуральных чисел

21

2

3.

Умножение и деление натуральных чисел

27

2

4.

Площади и объемы

12

1


Глава 2. Десятичные дроби

79


5.

Обыкновенные дроби

23

2

6.

Десятичные дроби. Сложение и вычитание десятичных дробей

13

1

7.

Умножение и деление десятичных дробей

26

2

8.

Инструменты для вычислений и измерений

17

2

9.

Повторение. Решение задач

11

1

10.

Резерв

9



Итого

175

14


Содержание тем учебного курса

1. Натуральные числа и шкалы (15 ч). Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Цель: систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Систематизация сведений о натуральных числах позволяет восстановить у обучающихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков.Рассматриваются простейшие комбинаторные задачи.В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче.

2. Сложение и вычитание натуральных чисел (21 ч).Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Цель: закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание).

3. Умножение и деление натуральных чисел (27 ч).Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач.

Цель: закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные обучающимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4. Площади и объемы (12 ч).Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.

Цель: расширить представления обучающихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

5. Обыкновенные дроби (23 ч).Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Цель: познакомить обучающихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от обучающихся.

6.Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч).Десятичная дробь. Сравнение, округление, слежение и вычитание десятичных дробей. Решение текстовых задач.

Цель: выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у обучающихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

7.Умножение и деление десятичных дробей (26 ч).Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Цель: выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8.Инструменты для вычислений и измерений (17 ч).Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла.Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Цель: сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

У обучающихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.Продолжается работа по распознаванию и изображению и геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы.Китовые диаграммы дают представления обучающимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий.

9. Повторение. Решение задач (11 ч).

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 5 класса.

10. Резерв (9 ч)



ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ В 5 КЛАССЕ


В ходе преподавания математики в 5 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


Программа обеспечивает достижение обучающимися следующих личностных, метапредметных и предметных результатов.

Личностные результаты

  • Чувство гордости за свою Родину, российский народ и историю России;

  • Осознание роли своей страны в мировом развитии, уважительное отношение к семейным ценностям, бережное отношение к окружающему миру.

  • Целостное восприятие окружающего мира.

  • Развитую мотивацию учебной деятельности и личностного смысла учения, заинтересованность в приобретении и расширении знаний и способов действий, творческий подход к выполнению заданий.

  • Рефлексивную самооценку, умение анализировать свои действия и управлять ими.

  • Навыки сотрудничества со взрослыми и сверстниками.

  • Установку наздоровый образ жизни, наличие мотивации к творческому труду, к работе на результат.


Метапредметные результаты

  • Способность принимать и сохранять цели и задачи учебной деятельности, находитьсредства и способы её осуществления.

  • Овладениеспособами выполнения заданий творческого и поискового характера.

  • Умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями её выполнения, определять наиболее эффективные способы достижения результата.

  • Способность использовать знаково-символические средства представления информации для создания моделей изучаемых объектов и процессов, схем решения учебно-познавательных и практических задач.

  • Использование речевых средств и средств информационных и коммуникационных технологий для решения коммуникативных и познавательных задач.

  • Овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления
    аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям.

  • Готовность слушать собеседника и вести диалог; готовность признать возможность существования различных точек зрения и права каждого иметь свою; излагать своё мнение и аргументировать свою точку зрения.

  • Определение общей цели и путей её достижения: умение договариваться о распределении функций и ролей в совместной деятельности, осуществлять взаимный контроль в совместной деятельности, адекватно оценивать собственное поведение и поведение окружающих.

  • Овладение начальными сведениями о сущности и особенностях объектов и процессов в соответствии с содержанием учебного предмета «математика».

  • Овладение базовыми предметными и межпредметными понятиями, отражающими существенные связи и отношения между объектами и процессами.


Предметные результаты

  • Использование приобретённых математических знаний для описания и объяснения окружающих предметов, процессов, явлений, а также для
    оценки их количественных и пространственных отношений.

  • Овладение основами логического и алгоритмического мышления,
    пространственного воображения и математической речи, основами счёта,измерения, прикидки результатаи его оценки, наглядного представления данных в разной форме (таблицы, схемы, диаграммы),записи и выполнения алгоритмов.

  • Умения выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, выполнять и строить алгоритмы и стратегии в игре, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, представлять, анализировать и интерпретировать данные.

  • Приобретение первоначальных навыков работы на компьютере (набирать текст на клавиатуре, работать с меню, находить информацию по заданной теме, распечатывать её на принтере).


В результате изучения курса математики 5 класс учащиеся должны:

знать/понимать

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов;

  • выполнять арифметические действия с рациональными числами, находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.



Учебно-методическое обеспечение:

  • ФГОС_ОО. Утвержден приказом Министерства образования и науки РФ от 17.12.2010 №1897.

  • Математика: Учеб. для 5 кл. общеобразоват. учреждений/ Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. -М.: Мнемозина, 2011.

  • А.С. Чесноков, К.И. Нешков Дидактические материалы по математике 5 класс — М.: Просвещение, 2007—2008.

  • Математика. 5 класс. Рабочая программа по учебнику Н.Я.Виленкина, В.И.Жохова и др. / Т.А.Лопатина, Г.С.Мещерякова., Учитель, 2014.

  • Примерные программы по учебным предметам. Математика 5-9 классы. - М.: Просвещение, 2011.

  • Жохов В.И. Математический тренажер. 5 класс. – М.: Мнемозина, 2012.

  • Жохов В.И. Контрольные работы по математике. Пособие. 5 класс. – М.: Мнемозина, 2011.

  • Попов М.А. Дидактические материалы по математике. 5 класс. К учебнику Н.Я.Виленкина и др. – Экзамен, 2012.

  • Математика. 5 класс: рабочая программа по учебнику Н.Я.Виленкина, В.И.Жохова и др. / О.С.Кузнецова, Л.Н. Абознова и др. – Волгоград: Учитель, 2012




























п/п

Тема урока

Виды деятельности учащихся

Планируемые результаты

Дата план

Дата факт





Предметные

Личностные

Метапредметные













1

Обозначение натуральных чисел.


Обсуждение и выведение определения «натуральное число»; чтение чисел; запись чисел.

Читают и записывают многозначные числа

Выражать положительное отношение к процессу познания; применять правила делового сотрудничества; оценивать свою учебную деятельность

(Р) – Определение цели УД; работа по составленному плану. (П) – Передают содержание в сжатом виде. (К) – Уметь отстаивать точку зрения, аргументировать.




2

Обозначение натуральных чисел.




3

Отрезок. Длина отрезка. Треугольник

Обсуждение и выведение понятия «отрезок, концы отрезка, длина отрезка»; называние отрезков; изображение отрезка, запись точек.

Строят отрезок , называют его элементы, измеряют длину отрезка, выражают длину в различных единицах

Применяют правила делового сотрудничества; оценивание своей учебной деятельности; выражают положит. отношение к процессу познания

(Р) – Определение цели УД; работа по составленному плану. (П) – записывают правила «если…то…»; Передают содержание в сжатом виде. (К) – Уметь отстаивать точку зрения; работа в группе




4

Отрезок. Длина отрезка. Треугольник




5

Отрезок. Длина отрезка. Треугольник




6

Плоскость. Прямая. Луч


Указание взаимного расположения прямой, луча, отрезка; запись чисел

Строят прямую, луч; называют точки, прямые, лучи, точки

выражают положит. отношение к процессу познания; дают адекватную оценку своей учебной деятельности

(Р) – работа по составленному плану; доп. источники информации. (П) – «если… то…». (К) – умеют слушать других, договариваться




7

Плоскость. Прямая. Луч




8

Шкалы и координаты


Обсуждение понятий «штрих, деление, шкала»; устные вычисления; координаты точек.

Строят координатный луч, изображают точки на нём; единицы измерения

Осваивают роль обучающегося; дают адекватную оценку своей учебной деятельности; объясняют отличия в оценках ситуации разными людьми

(Р) – составление плана и работа по плану. (П) – делают предположения об инф-ции, нужной для решения учебной задачи. (К) – умеют договариваться, менять точку зрения




9

Шкалы и координаты




10

Шкалы и координаты




11

Меньше или больше


Выведение правил: какое из двух чисел больше; устные вычисления; изобр-е чисел на луче

Сравнивают числа по разрядам; записывают результат сравнения с помощью «>,<»

Проявляют познават. интерес к изучению предмета; применяют правила делового сотруднич-ва

(Р) – совершенствуют критерии оценки и самооценки. (П) – передают сод-е в сжатом или развернутом виде. (К) – оформление мысли в устной и письменной речи




12

Меньше или больше




13

Меньше или больше




14

к/р№ 1: Натуральные числа и шкалы

Решение к/р №1

Используют разные приемы проверки правильности выполняемых заданий

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, выход и этой ситуации. (П) – делают предположения об инф-ции. (К) –критично относятся к своему мнению




15

Сложение натуральных чисел и его свойства









16

Сложение натуральных чисел и его свойства

Обсуждение названий компонентов и рез-тата сложения; сложение натуральных чисел; решение задач на сложение натуральных чисел.

Складывают натуральные числа; прогнозируют результат вычислений

Понимают причины успеха в учебной деятельности; проявляют познавательный интерес к учению; дают адекватную оценку своей деятельности

(Р) – определяют цель учебнойдеят-ти; работают по составленному плану. (П) – передают сод-е в развёрнутом или сжатом виде. (К) – умеют принимать точку зрения другого; умеют организовать учебное взаимодействие в группе




17

Сложение натуральных чисел и его свойства




18

Сложение натуральных чисел и его свойства




19

Сложение натуральных чисел и его свойства




20

Вычитание


Обсуждение названий компонентов и рез-тата вычитания; свойств вычитания; вычитание и сложение чисел; решение задач

Вычитают натуральные числа; прогнозируют рез-тат вычисления, выбирая удобный порядок

Понимают необходимость учения; объясняют отличия в оценках той или иной ситуации разными людьми

(Р) – определяют цель учения; работают по составленному плану. (П) –записывают выводы правил «если… то…». (К) – умеют организовать учебное взаимодействие в группе




21

Вычитание




22

Вычитание




23

Вычитание




24

к/р №2: Сложение и вычитание натуральных чисел

Решение к/р №2.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач




25

Числовые и буквенные выражения

Определение буквенного выражения; составление и запись буквенных выражений; нахождение значения буквенного выражения

Составляют и записывают буквенные выражения;

Проявляют положит-ноеотн-е к урокам математики, объясняют самому себе свои наиболее заметные достижения, оценивают свою познавательную деятельность

(Р) – обнаруживают и формулируют проблему вместе с учителем. (П) – делают предположение об инф-ции, необходимой для решения задачи. (К) – умеют принимать точку зрения других, договариваться




26

Числовые и буквенные выражения




27

Числовые и буквенные выражения




28

Буквенная запись свойств сложения и вычитания.

Обсуждение и запись свойств сложения и вычитания с помощью букв; устные вычисления; упрощение выражений; нахождение значений выражения

Читают и записывают с помощью букв свойства сложения и вычитания; вычисляют числовое значение буквенного выражения

Дают положительную адекватную самооценку на основе заданных критериев успешности УД; проявляют познавательный интерес к предмету

(Р) – определяют цель УД; работают по составленному плану. (П) –передают содержание в сжатом или развернутом виде. (К) – умеют организовать учебное взаимодействие в группе; умеют принимать точку зрения других, договариваться, изменять свою точку зрения




29

Буквенная запись свойств сложения и вычитания.




30

Буквенная запись свойств сложения и вычитания.




31

Уравнение

Обсуждение понятий «уравнение, корень уравнения, решить уравнение»; решение задач; решение уравнений

Решают простейшие уравнения; составляют уравнение как математическую модель задачи

Дают позитивную самооценку на основе заданных критериев успешности УД; проявляют познавательный интерес к предмету

(Р) –составляют план выполнения заданий вместе с учителем. (П) – сопоставляют отбирают информацию. (К) – умеют оформлять мысли в устной и письменной форме




32

Уравнение




33

Уравнение




34

Уравнение




35

К/р №3: Числовые и буквенные выражения

Решение к/р №3.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




36


Умножение натуральных чисел и его свойства

Обсуждение и выведение правила умножения натуральных чисел, их свойств; устные вычисления; выполнение действий с применением свойств умножения; замена сложения умножением; решение задач различными способами

Находят и выбирают порядок действий; пошагово контролируют правильность вычислений; моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения

Объясняют отличия в оценках одной ситуации разными людьми; проявляют интерес к способам решения познавательных задач; дают положительную адекватную самооценку на основе заданных критериев успешности УД; проявляют познавательный интерес к предмету

(Р) – составляют план выполнения заданий вместе с учителем; работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи; записывают вывод «если… то…». (К) – умеют отстаивать свою точку зрения, приводить аргументы; принимать точку зрения другого; организовать учебное взаимодействие в группе




37

Умножение натуральных чисел и его свойства




38

Умножение натуральных чисел и его свойства




39

Умножение натуральных чисел и его свойства




40

Умножение натуральных чисел и его свойства




41

Умножение натуральных чисел и его свойства




42

Деление

Обсуждение и выведение правил нахождения делимого, делителя; деление натуральных чисел; решение задач с помощью уравнений;

Исследуют ситуации, требующие сравнения величин; решают простейшие уравнения; планируют решение задачи

Объясняют самому себе свои отдельные ближайшие цели саморазвития; проявляют устойчивый интерес к способам решения задач

(Р) – определяют цель УД, осуществляют средства её достижения. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других




43

Деление




44

Деление




45

Деление




46

Деление




47

Деление




48

Деление с остатком


Обсуждение и выведение правил деления с остатком; устные вычисления

Исследуют ситуации, требующие сравнения величин, их упорядочения;

Проявляют устойчивый интерес к способам решения задач; объясняют ход решения задачи

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – выводы «если… то…». (К) – умеют принимать точку зрения другого




49

Деление с остатком




50

Деление с остатком




51

К/р №4: Умножение и деление натуральных чисел

Решение к/р №4.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




52

Упрощение выражений

Обсужд-е и выведение распределительного свойства умнож-яотн-но сложения и вычитания; умножение натуральных чисел; решение уравнений и задач;

Применяют буквы для обозначения чисел; выбирают удобный порядок выполнения действий; составляют буквенные выражения

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД; осознают и принимают социальную роль ученика

(Р) –работают по составленному плану, используют дополнительную литературу. (П) – строятпредположения об информации, необходимой для решения предметной задачи. (К) – умеют слушать других; принимать точку зрения другого




53

Упрощение выражений




54

Упрощение выражений




55

Упрощение выражений




56

Упрощение выражений




57

Упрощение выражений




58

Порядок выполнения действий

Обсужд-е и выведение правил выполнения действий; нахождение значения выражений

Действуют по самостоятельно выбранному алгоритму решения задач

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД;

(Р) – понимают причины своего неуспеха; выход из данной ситуации. (П) – передают сод-е в сжатом или развернутом виде. (К) – умеют слушать других;




59

Порядок выполнения действий





60


Квадрат и куб числа


Обсуждение понятий «квадрат, куб, степень, основание, показатель степени»; составление таблицы квадратов и кубов

Контролируют правильность выполнения заданий

Проявляют устойчивый интерес к способам решения познавательных задач; осознают и принимают социальную роль ученика

(Р) – работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи. (К) – умеют слушать других; принимать точку зрения другого




61


Квадрат и куб числа




62


К/р №5: Упрощение выражений

Решение к/р №5.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




63

Формулы


Выведение формулы пути; ответы на вопросы; решение задач

Составляют буквенные выражения, находят значения выражений

Проявляют устойчивый интерес к способам решения познавательных задач; осознают и принимают социальную роль ученика

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – выводы «если… то…». (К) – умеют принимать точку зрения другого




64


Формулы




65

Площадь. Формула площади прямоугольника

Обсуждение и выведение формул площади прямоугольника и квадрата, всей фигуры; ответы на вопросы; решение задач

Описывают явления и события с использованием буквенных выражений; работают по составленному плану

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД; Объясняют себе свои наиболее заметные достижения

(Р) – работают по составленному плану. (П) – записывают выводы «если… то…». (К) – умеют высказывать свою точку зрения, оформлять свои мысли в устной и письменной речи




66


Площадь. Формула площади прямоугольника




67

Единицы измерения площадей

Обсуждение понятий «квадратный метр, дециметр, ар, гектар»; ответы на вопросы; решение задач на нахождение площади

Переходят от одних единиц измерения к другим; решают житейские ситуации (планировка, разметка)

Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают социальную роль ученика

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого




68

Единицы измерения площадей




69

Единицы измерения площадей




70


Прямоугольный параллелепипед

Обсужд-е и называние граней, ребер, вершин;

Распознают на чертежах прямоугольный параллелепипед

дают положительную самооценку и оценку результатов УД;

(Р) – определяют цель УД, осуществляют средства её достижения. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других




71

Объёмы. Объём прямоугольного параллелепипеда

Обсуждение понятий «кубический см, дм, км»; правила перевода литра в кубические метры; нахождение объёма пр/п;

Переходят от одних единиц измерения к другим; пошагово контролируют правильность и полноту выполнения

Проявляют положит-ноеотн-е к урокам математики, объясняют самому себе свои наиболее заметные достижения, оценивают свою познавательную деятельность

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




72

Объёмы. Объём прямоугольного параллелепипеда





73

Объёмы. Объём прямоугольного параллелепипеда

переход от одних единиц измерения к другим; решение задач практической направленности

алгоритма арифметического действия

дают положительную самооценку и оценку результатов УД;

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – выводы «если… то…». (К) – умеют принимать точку зрения другого




74

Объёмы. Объём прямоугольного параллелепипеда




75


К/р №6: Площади и объёмы

Решение к/р №6.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




76


Окружность и круг


Радиус окружности, центр круга, диаметр; построение окружности, круга

Изображают окружность, круг; наблюдают за изменением решения задач от условия

Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают социальную роль ученика

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого




77


Окружность и круг




78

Доли. Обыкновенные дроби

Обсуждение того, что показывает числитель и знаменатель; ответы на вопросы; решение задач на нахождение числа по его дроби; нахождение дроби от числа; изображение геометрической фигуры, деление её на равные части

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия; используют различные приёмы проверки правильности выполнения заданий

Проявляют устойчивый интерес к способам решения познавательных задач; дают положительную самооценку и оценку результатов УД; Объясняют себе свои наиболее заметные достижения

(Р) – составляют план выполнения заданий вместе с учителем; работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи; записывают вывод «если… то…». (К) – умеют отстаивать свою точку зрения, приводить аргументы; принимать точку зрения другого; организовать учебное взаимодействие в группе




79

Доли. Обыкновенные дроби




80

Доли. Обыкновенные дроби




81

Доли. Обыкновенные дроби




82

Доли. Обыкновенные дроби




83

Сравнение дробей


Изображение и выведение равных дробей на коорд.луче; сравнение обыкновенных дробей

Исследуют ситуации, требующие сравнения чисел, их упорядочения; сравнивают разные способы вычисления

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.

(Р) – определяют цель учебной деятельности; осущ-ют поиск средств её достижения. (П) – записывают выводы правил «если…, то…». (К) – умеют критично относиться к своему мнению; организовать взаимодействие в группе




84

Сравнение дробей





85

Сравнение дробей




86

Правильные и неправильные дроби

Какая дробь называется правильной, неправильной; запись правильных и неправильных дробей; решение задач величины данной дроби

Указывают правильные и неправильные дроби; выделяют целую часть из неправильной дроби;

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД

(Р) – составляют план выполнения заданий; обнаруживают и формулируют проблему; (П) – записывают выводы правил «если… то…». (К) – умеют принимать точку зрения другого




87

Правильные и неправильные дроби




88

Правильные и неправильные дроби





89


К/р №7: Обыкновенные дроби

Решение к/р №7.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




90

Сложение и вычитание дробей с одинаковыми знаменателями

Обсуждение и выведение правил сложения (вычитания) дробей с одинаковыми знаменателями; решение задач на сложение и вычитание дробей с одинаковыми знаменателями; решение уравнений

Обнаруживают и устраняют ошибки логического (в ходе решения) и арифметического (в вычислении) характера; самостоятельно выбирают способ решения заданий

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде; выводы правил «если…, то…». (К) – умеют слушать других; уважительно относиться к мнению других; умеют организовать взаимодействие в группе




91

Сложение и вычитание дробей с одинаковыми знаменателями




92

Сложение и вычитание дробей с одинаковыми знаменателями




93

Деление и дроби


Каким числом является частное, если деление выполнено нацело, не нацело

Записывают дробь в виде частного и частное в виде дроби

Проявляют положительное отношение к урокам математики; понимают причины успеха в своей УД.

(Р) – работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других.




94

Деление и дроби




95

Смешанные числа



Выведение правил, что такое целая часть и дробная часть; запись смешанного числа в виде неправильной дроби

Представляют число в виде суммы его целой и дробной части; действуют со заданному и самостоятельно выбранному плану

Объясняют себе свои наиболее заметные достижения; Проявляют устойчивый интерес к способам решения познавательных задач; осознают и принимают социальную роль ученика

(Р) – определяют цель УД, осуществляют средства её достижения. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; уважительно относиться к мнению других




96

Смешанные числа




97

Сложение и вычитание смешанных чисел

Обсуждение и выведение правил сложения и вычитания смешанных чисел; решение задач на сложение и вычитание смешанных чисел

Складывают и вычитают смешанные числа; используют математическую терминологию при записи и выполнении действия

Объясняют самому себе свои отдельные ближайшие цели саморазвития; проявляют устойчивый интерес к способам решения задач; Проявляют устойчивый интерес к способам решения познавательных задач;

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют уважительно относиться к мнению других




98

Сложение и вычитание смешанных чисел




99

Сложение и вычитание смешанных чисел




100

К/р №8: Сложение и вычитание дробей с одинаковыми знаменателями.

Решение к/р №8.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению





101

Десятичная запись дробных чисел


Выведение правила короткой записи десятичной дроби; чтение и запись десятичных дробей

Читают и записывают десятичные дроби; прогнозируют результат вычислений

дают положительную самооценку и оценку результатов УД; Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач,

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют уважительно относиться к мнению других




102

Десятичная запись дробных чисел




103

Сравнение десятичных дробей

Выведение правил сравнения десятичных дробей; запись десятичной дроби с пятью (и более) знаками после запятой, равной данной

Исследуют ситуацию, требующую сравнения чисел, их упорядочения; сравнивают числа по классам и разрядам; объясняют ход решения задачи

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижения

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют уважительно относиться к мнению других




104

Сравнение десятичных дробей




105

Сравнение десятичных дробей




106

Сложение и вычитание десятичных дробей

Выведение правил сложения и вычитания десятичных дробей; что показывает каждая цифра после запятой. Сложение и вычитание десятичных дробей; решение задач на сложение и вычитание десятичных дробей

Складывают и вычитают десятичные дроби; используют математическую терминологию при записи и выполнении арифметического действия (сложения и вычитания)

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД; Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач,

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других




107

Сложение и вычитание десятичных дробей




108

Сложение и вычитание десятичных дробей




109

Сложение и вычитание десятичных дробей




110

Сложение и вычитание десятичных дробей




111

Приближённые значения чисел. Округление чисел.


Выведение правил округления чисел; запись натуральных чисел, между которыми расположены дес. дроби

Округляют числа до заданного разряда

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД;

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде. (К) – умеют слушать других; умеют организовать взаимодействие в группе




112

Приближённые значения чисел. Округление чисел.




113

К/р №9: Десятичные дроби. Сложение и вычитание десятичных дробей

Решение к/р №9.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению





114

Умножение десятичных дробей на натуральное число

Обсуждение и выведение правил умножения дес. дроби на натуральное число, десятичной дроби на 10, 100, 1000 … запись произведения в виде суммы; запись суммы в виде произведения

Умножают десятичные числа на натуральное число; пошагово контролируют правильность выполнения арифметического действия

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей УД.Объясняют себе свои наиболее заметные достижения

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других




115

Умножение десятичных дробей на натуральное число




116


Умножение десятичных дробей на натуральное число




117

Деление десятичной дроби на натуральное число

Обсуждение и выведение правил деления десятичной дроби на натуральное число, на 10, 100, 1000… Деление десятичных дробей на натуральные числа; запись обыкновенной дроби в виде десятичной; решение задач по теме деления десятичных дробей на натуральные числа

Делят десятичные дроби на натуральные числа; моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей учебной деятельности

(Р) – составляют план выполнения заданий вместе с учителем; работают по составленному плану. (П) – строят предположения об информации, необходимой для решения предметной задачи; записывают вывод «если… то…». (К) – умеют отстаивать свою точку зрения, приводить аргументы; принимать точку зрения другого; организовать учебное взаимодействие в группе




118

Деление десятичной дроби на натуральное число




119

Деление десятичной дроби на натуральное число




120

Деление десятичной дроби на натуральное число




121

Деление десятичной дроби на натуральное число




122

К/р №10: Умножение и деление десятичных дробей

Решение к/р №10.

Используют разные приемы проверки правильности ответа

Объясняют себе свои наиболее заметные достижения

(Р) – понимают причины неуспеха, (П) – делают предположения об инф-ции, нужной для решения задач (К) – умеют критично относиться к своему мнению




123

Умножение десятичных дробей

Обсуждение и выведение правил умножения на десятичную дробь, на 0,1, 0,01, 0,001, …; умножение десятичных дробей; решение задач на умножение десятичных дробей

Умножают десятичные дроби; решают задачи на умножение десятичных робей

Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач, понимают причины успеха в своей учебной деятельности

(Р) – определяют цель УД, осуществляют средства её достижения; используют основные и дополнительные средства. (П) – передают содержание в сжатом или развёрнутом виде. (К) – имеют свою точку зрения; умеют уважительно относиться к мнению других




124

Умножение десятичных дробей




125

Умножение десятичных дробей




126

Умножение десятичных дробей




127

Умножение десятичных дробей





128

Деление на десятичную дробь

Выведение правила деления десятичной дроби на десятичную дробь; как разделить десятичную дробь на 0,1, 0,01, 0,001…; ответы на вопросы; решение задач на деление десятичных дробей

Делят на десятичную дробь; решают задачи на деление на десятичную дробь; действуют по составленному плану решения заданий

Объясняют самому себе свои отдельные ближайшие цели саморазвития, проявляют познавательный интерес к изучению предмета, дают адекватную оценку своей УД; Проявляют положительное отношение к урокам математики, широкий интерес к способам решения новых учебных задач,

(Р) – определяют цель УД, осуществляют средства её достижения; работают по составленному плану. (П) – передают содержание в сжатом или развёрнутом виде; выводы правил «если…, то…». (К) – умеют слушать других; уважительно относиться к мнению других; умеют организовать взаимодействие в группе




129

Деление на десятичную дробь




130

Деление на десятичную дробь




131

Деление на десятичную дробь




132

Деление на десятичную дробь




133

Деление на десятичную дробь




134

Деление на десятичную дробь




135